Though generalization of conditioned fear has been implicated as a central feature of pathological anxiety, surprisingly little is known about the psychobiology of this learning phenomenon in humans. Whereas animal work has frequently applied methods to examine generalization gradients to study the gradual weakening of the conditioned-fear response as the test stimulus increasingly differs from the conditioned stimulus (CS), to our knowledge no psychobiological studies of such gradients have been conducted in humans over the last 40 years. The current effort validates an updated generalization paradigm incorporating more recent methods for the objective measurement of anxiety (fear-potentiated startle). The paradigm employs 10, quasi-randomly presented, rings of graduallyincreasing size with extremes serving as CS+ and CS-. The eight rings of intermediary size serve as generalization stimuli (GS's) and create a continuum-of-similarity from CS+ to CS-. Both startle data and online self-report ratings demonstrate continuous decreases in generalization as the presented stimulus becomes less similar to the CS+. The current paradigm represents an updated and efficacious tool with which to study fear generalization-a central, yet understudied conditioningcorrelate of pathologic anxiety.
Functional imaging studies of cued fear conditioning in humans have mostly confirmed findings in animals, but it is unclear whether the brain mechanisms that underlie contextual fear conditioning in animals are also preserved in humans. We investigated this issue using functional magnetic resonance imaging and virtual reality contexts. Subjects underwent differential context conditioning in which they were repeatedly exposed to two contexts (CXTϩ and CXTϪ) in semirandom order, with contexts counterbalanced across participants. An unsignaled footshock was consistently paired with the CXTϩ, and no shock was ever delivered in the CXTϪ. Evidence for context conditioning was established using skin conductance and anxiety ratings. Consistent with animal models centrally implicating the hippocampus and amygdala in a network supporting context conditioning, CXTϩ compared with CXTϪ significantly activated right anterior hippocampus and bilateral amygdala. In addition, context conditioning was associated with activation in posterior orbitofrontal cortex, medial dorsal thalamus, anterior insula, subgenual anterior cingulate, and parahippocampal, inferior frontal, and parietal cortices. Structural equation modeling was used to assess interactions among the core brain regions mediating context conditioning. The derived model indicated that medial amygdala was the source of key efferent and afferent connections including input from orbitofrontal cortex. These results provide evidence that similar brain mechanisms may underlie contextual fear conditioning across species.
Objective A detailed understanding of how individuals diagnosed with social anxiety disorder (SAD) respond physiologically under social-evaluative threat is lacking. We aimed to isolate the specific components of public speaking that trigger fear in vulnerable individuals and best discriminate among SAD and healthy individuals. Method Sixteen individuals diagnosed with SAD and 16 healthy individuals were asked to prepare and deliver a short speech in a virtual reality (VR) environment. The VR environment simulated standing center stage before a live audience and allowed us to gradually introduce social cues during speech anticipation. Startle eye-blink responses were elicited periodically by white noise bursts presented during anticipation, speech delivery, and recovery in VR, as well as outside VR during an initial habituation phase. Results SAD individuals reported greater distress and state anxiety than healthy individuals across the entire procedure (ps < .005). Analyses of startle reactivity revealed a robust group difference during speech anticipation in VR, specifically as audience members directed their eye gaze and turned their attention toward participants (p < .05, Bonferroni corrected). Conclusions The VR environment is sufficiently realistic to provoke fear and anxiety in individuals highly vulnerable to socially threatening situations. SAD individuals showed potentiated startle, indicative of a strong phasic fear response, specifically when they perceived themselves as occupying the focus of others' attention as speech time approached. Potentiated startle under social-evaluative threat indexes SAD-related fear of negative evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.