A peripheral nerve graft model was used to examine axonal growth after a unilateral cervical (C) contusion injury in adult rats and to determine if manipulation of an injury site prior to transplantation affects spontaneous behavioral recovery. After a short delay (7d) the epicenter of a C4 contusion was exposed and aspirated without harming the cavity walls followed by apposition with one end of a predegenerated tibial nerve to the rostral cavity wall. After a longer delay (28d) the aspirated cavity was treated with GDNF to promote regeneration by chronically injured neurons. In both groups forelimb and hindlimb locomotor scores decreased significantly 2d after lesion site manipulation, but by 7d, the forelimb score was not different from the pre-manipulation score. There was no significant difference in grid walking or grip strength scores for the affected forelimb in either group 7d after contusion vs. 7d after manipulation. Over 1500 brain stem and propriospinal neurons grew axons into the graft with either delay. These results demonstrate that a contusion injury site can be manipulated prior to transplantation without causing long-lasting forelimb or hindlimb behavioral deficits and that peripheral nerve grafts support axonal growth after acute or chronic contusion injury.
Summary: Traumatic insults to the spinal cord induce both immediate mechanical damage and subsequent tissue degeneration leading to a substantial physiological, biochemical, and functional reorganization of the spinal cord. Various spinal cord injury (SCI) models have shown the adaptive potential of the spinal cord and its limitations in the case of total or partial absence of supraspinal influence. Meaningful recovery of function after SCI will most likely result from a combination of therapeutic strategies, including neural tissue transplants, exogenous neurotrophic factors, elimination of inhibitory molecules, functional sensorimotor training, and/or electrical stimulation of paralyzed muscles or spinal circuits. Peripheral nerve grafts provide a growthpermissive substratum and local neurotrophic factors to enhance the regenerative effort of axotomized neurons when grafted into the site of injury. Regenerating axons can be directed via the peripheral nerve graft toward an appropriate target, but they fail to extend beyond the distal graft-host interface because of the deposition of growth inhibitors at the site of SCI. One method to facilitate the emergence of axons from a graft into the spinal cord is to digest the chondroitin sulfate proteoglycans that are associated with a glial scar. Importantly, regenerating axons that do exit the graft are capable of forming functional synaptic contacts. These results have been demonstrated in acute injury models in rats and cats and after a chronic injury in rats and have important implications for our continuing efforts to promote structural and functional repair after SCI.
Traumatic injury to the spinal cord (SCI) causes death of neurons, disruption of motor and sensory nerve fiber (axon) pathways and disruption of communication with the brain. One of the goals of our research is to promote axon regeneration to restore connectivity across the lesion site. To accomplish this we developed a peripheral nerve (PN) grafting technique where segments of sciatic nerve are either placed directly between the damaged ends of the spinal cord or are used to form a bridge across the lesion. There are several advantages to this approach compared to transplantation of other neural tissues; regenerating axons can be directed towards a specific target area, the number and source of regenerating axons is easily determined by tracing techniques, the graft can be used for electrophysiological experiments to measure functional recovery associated with axons in the graft, and it is possible to use an autologous nerve to reduce the possibility of graft rejection. In our lab we have performed both autologous (donor and recipient are the same animal) and heterologous (donor and recipient are different animals) grafts with comparable results. This approach has been used successfully in both acute and chronic injury situations. Regenerated axons that reach the distal end of the PN graft often fail to extend back into the spinal cord, so we use microinjections of chondroitinase to degrade inhibitory molecules associated with the scar tissue surrounding the area of SCI. At the same time we have found that providing exogenous growth and trophic molecules encourages longer distance axonal regrowth into the spinal cord. Several months after transplantation we perform a variety of anatomical, behavioral and electrophysiological tests to evaluate the recovery of function in our spinal cord injured animals. This experimental approach has been used successfully in several spinal cord injury models, at different levels of injury and in different species (mouse, rat and cat). Importantly, the peripheral nerve grafting approach is effective in promoting regeneration by acute and chronically injured neurons. The surgical station needs to be clean and sanitized with a dilute bleach solution prior to setting out instruments and accessory materials. Instruments will be autoclaved 1 day prior to surgery and stored in a sterile container. Turn on the Hot Bead Sterilizer (Fine Science Tools) used to remove pathogens and microbial contaminants from instruments between procedures on different animals. 2. Plug in the thermal barrier used to maintain body temperature during the surgical procedure. Set out cotton swabs and gauze pads used to control bleeding. Prepare small (< 2mm 3 ) pieces of Gel Foam to be used for micro-hemostasis and immerse in a sterile saline solution. 3. Place rat in an induction chamber and anesthetize with Isoflurane (5% vaporized in oxygen, flow rate 2.0 L/min). Remove animal from chamber to preparation table and shave a wide area of fur from the intended surgical field. Wipe with 70% isopropyl al...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.