Leaf traits are frequently measured in ecology to provide a 'common currency' for predicting how anthropogenic pressures impact ecosystem function. Here, we test whether leaf traits consistently respond to experimental treatments across globally distributed grassland sites across four continents. We find specific leaf area (SLA; leaf area per unit mass), a commonly measured morphological trait to
Soil nitrogen mineralisation (Nmin), the conversion of organic into inorganic N, is important for productivity and nutrient cycling. The balance between mineralisation and immobilisation (net Nmin) varies with soil properties and climate. However, because most global-scale assessments of net Nmin are laboratory-based, its regulation under field-conditions and implications for real-world soil functioning remain uncertain. Here, we explore the drivers of realised (field) and potential (laboratory) soil net Nmin across 30 grasslands worldwide. We find that realised Nmin is largely explained by temperature of the wettest quarter, microbial biomass, clay content and bulk density. Potential Nmin only weakly correlates with realised Nmin, but contributes to explain realised net Nmin when combined with soil and climatic variables. We provide novel insights of global realised soil net Nmin and show that potential soil net Nmin data available in the literature could be parameterised with soil and climate data to better predict realised Nmin.
Soil microbial communities regulate global biogeochemical cycles and respond rapidly to changing environmental conditions. However, understanding how soil microbial communities respond to climate change, and how this influences biogeochemical cycles, remains a major challenge. This is especially pertinent in alpine regions where climate change is taking place at double the rate of the global average, with large reductions in snow cover and earlier spring snowmelt expected as a consequence. Here, we show that spring snowmelt triggers an abrupt transition in the composition of soil microbial communities of alpine grassland that is closely linked to shifts in soil microbial functioning and biogeochemical pools and fluxes. Further, by experimentally manipulating snow cover we show that this abrupt seasonal transition in wideranging microbial and biogeochemical soil properties is advanced by earlier snowmelt. Preceding winter conditions did not change the processes that take place during snowmelt. Our findings emphasise the importance of seasonal dynamics for soil microbial communities and the biogeochemical cycles that they regulate. Moreover, our findings suggest that earlier spring snowmelt due to climate change will have far reaching consequences for microbial communities and nutrient cycling in these globally widespread alpine ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.