In the meso-oligotrophic Bay of Biscay, a diminishing downward organic matter flux with depth is accompanied by an important decrease of the live foraminiferal density. Although bottom water oxygenation is not directly influenced by organic matter input, the oxygenation of interstitial waters and the primary redox fronts do change in response to variations of the organic matter flux. The occurrence of deep and intermediate infaunal taxa can be linked to fundamental redox fronts and putative associated bacterial consortia. Our data are in agreement with the TROXmodel, which explains the benthic foraminiferal microhabitat as a function of organic flux and benthic ecosystem oxygenation. Both the depth of the principle redox fronts and the microhabitat of deep infaunal species show important increases with depth. At the deepest oligotrophic stations, deep infaunal faunas become relatively poor. Therefore, the exported flux of organic matter appears to be the main parameter controlling the composition and the vertical distribution of benthic foraminiferal faunas below the sediment-water interface. The oxygenation of pore waters plays only a minor role. A species-level adaptation of the TROX-model is presented for the Bay of Biscay. r
Fused filament fabrication (FFF) is the most common and widespread additive manufacturing (AM) technique, but it requires the formation of filament. Fused granular fabrication (FGF), where plastic granules are directly three-dimensional (3D) printed, has become a promising technique for the AM technology. FGF could be a key driver to promote further greening of distributed recycling thanks to the reduced melt solidification steps and elimination of the filament extruder system. However, only large-scale FGF systems have been tested for technical and economic viability of recycling plastic materials. The objective of this work is to evaluate the performance of the FFF and FGF techniques in terms of technical and economical dimensions at the desktop 3D printing scale. Recycled and virgin polylactic acid material was studied by using five different types of recycling feedstocks: commercial filament, pellets, distributed filament, distributed pellets, and shredded waste. The results showed that the mechanical properties from the FGF technique using same configurations showed no statistical differences to FFF samples. Nevertheless, the granulometry could have an influence on the reproducibility of the samples, which explains that the critical factor in this technology is to assure the material input in the feeding system. In addition, FGF costs per kg of material were reduced to less than 1 e/kg compared with more than 20 e/kg for commercial recycled filament. These results are encouraging to foster FGF printer diffusion among heavy users of 3D printers because of reducing the cost associated to the filament fabrication while ensuring the technical quality. This indicates the possibility of a new type of 3D printing recycled plastic waste that is more likely to drive a circular economy and distributed recycling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.