Last decade, the need for wireless sensors solutions as core-solutions of Structural Monitoring gained in interest. The cost of wireless devices compared to the cost of wiring important structures (bridges, energy-plants,...) is attractive. Most of recent development in WSN domain focused on energy (saving or harvesting), on wireless protocols, on embedded algorithms. But it is a fact that, most of monitoring applications need samples to be time-stamped. According to the application, the wished time resolution could be up to one second for automation monitoring, one millisecond for vibration, one microsecond for acoustic monitoring, one nanosecond for electricity or light propagation... The consequence for a Wireless network of electronic nodes is that, by nature, no common signal could physically provide a synchronization top. But, as each electronic device, a wireless sensor time-base uses a timer incremented by a quartz whose initial value is theoretical up to some p.p.m. and whose period drift on time because of age, temperature,... Two kind of solutions could be regarded : a synchronization signal provided by the wireless protocol itself; an absolute synchronization from a referential source such as: GPS, Frankfurt clock, Galileo,... In the first way, it will be demonstrated the poor accuracy and the need of energy such a mechanism offers. In the second way, the article will details how a deterministic (Universal Time), accurate and resilient algorithm has been implemented. The article also provides specific results of application on acoustic monitoring system and electricity propagation where the accuracy of a WSN has reached up to 10 nanosecond UT. Consequence on energy consumption of this algorithm are given with a description of future works to improve the energy balance while keeping the device sober and synchronized.
Operational modal analysis and vibration-based damage detection of engineering structures have become important issues for Structural Health Monitoring (SHM) and maintenance operations. For this task, embedded wireless platforms such as the PE-GASE platform are appealing and suitable to collect vibration data and then perform off-line and remote computation easily. To obtain detailed modal information of large and very large structures, many sensors would be required to cover the geometry of the structure with a reasonable accuracy. However, when only a limited amount of sensors is available, large structures can be measured in several sensor setups, where some sensors remain fixed and some are moved between different measurement setups. With the sensors connected to different wireless platforms, the synchronous acquisition of data is required. In this paper, a solution of data acquisition synchronization, as well as signal processing for merging the information taking into account the change of sensor positions and environmental variability is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.