The combination of digital breast tomosynthesis (DBT) with other imaging modalities has been investigated in order to improve the detection and diagnosis of breast cancer. Mechanical Imaging (MI) measures the stress over the surface of the compressed breast, using a pressure sensor, during radiographic examination and its response has shown a correlation with the presence of malignant lesions. Thus, the combination of DBT and MI (DBTMI) has shown potential to reduce false positive results in breast cancer screening. However, compared to the conventional DBT exam, the presence of the MI sensor during mammographic image acquisition may cause a slight increase in the radiation dose. This work presents a proposal to reduce the radiation dose in DBTMI exams by removing some projections from the original set and replacing them with synthetic projections generated by a video frame interpolation (VFI) neural network. We compared several DBTMI acquisition arrangements, considering the removal of 16% of the original projections, using a deformable physical breast phantom, and evaluated the quality of the reconstructed images based on the Normalized Root Mean Squared Error (NRMSE). The results showed that, for some arrangements, the slices reconstructed with the addition of synthetic DBTMI projections presented better quality than when they were reconstructed with the reduced set of projections. Further studies must be carried out to optimize the interpolation approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.