Finite-dimensional attractors play an important role in finite-dimensional reduction of PDEs in mathematical modelization and numerical simulations. For non-autonomous random dynamical systems, Cui and Langa (J Differ Equ, 263:1225–1268, 2017) developed a random uniform attractor as a minimal compact random set which provides a certain description of the forward dynamics of the underlying system by forward attraction in probability. In this paper, we study the conditions that ensure a random uniform attractor to have finite fractal dimension. Two main criteria are given, one by a smoothing property and the other by a squeezing property of the system, and neither of the two implies the other. The upper bound of the fractal dimension consists of two parts: the fractal dimension of the symbol space plus a number arising from the smoothing/squeezing property. As an illustrative application, the random uniform attractor of a stochastic reaction–diffusion equation with scalar additive noise is studied, for which the finite-dimensionality in $$L^2$$
L
2
is established by the squeezing approach and that in $$H_0^1$$
H
0
1
by the smoothing framework. In addition, a random absorbing set that absorbs itself after a deterministic period of time is also constructed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.