controlling for confounding bias is crucial in causal inference. Distinct methods are currently employed to mitigate the effects of confounding bias. Each requires the introduction of a set of covariates, which remains difficult to choose, especially regarding the different methods. We conduct a simulation study to compare the relative performance results obtained by using four different sets of covariates (those causing the outcome, those causing the treatment allocation, those causing both the outcome and the treatment allocation, and all the covariates) and four methods: g-computation, inverse probability of treatment weighting, full matching and targeted maximum likelihood estimator. our simulations are in the context of a binary treatment, a binary outcome and baseline confounders. the simulations suggest that considering all the covariates causing the outcome led to the lowest bias and variance, particularly for g-computation. The consideration of all the covariates did not decrease the bias but significantly reduced the power. We apply these methods to two real-world examples that have clinical relevance, thereby illustrating the real-world importance of using these methods. We propose an R package RISCA to encourage the use of g-computation in causal inference. The randomised controlled trial (RCT) remains the primary design for evaluating the marginal (population average) causal effect of a treatment, i.e., the average treatment effect between two hypothetical worlds where: i) everyone is treated and ii) everyone is untreated 1. Indeed, a well-designed RCT with a sufficient sample size ensures the baseline comparability between groups, thus allowing the estimation of a marginal causal effect. Nevertheless, it is well established that RCT is performed under optimal circumstances (e.g., over-representation of treatment-adherent patients, low frequency of morbidity), which may be different from real-life practices 2. Observational studies have the advantage of limiting the issue of external validity, but treated and untreated patients are often non-comparable, leading to a high risk of confounding bias. To reduce such confounding bias, the vast majority of observational studies have been based on multivariable models (mainly linear, logistic, or Cox models), allowing for the direct estimation of conditional (subject-specific) effects, i.e., the average effect across sub-populations of subjects who share the same characteristics. Several
In time-to-event settings, g-computation and doubly robust estimators are based on discrete-time data. However, many biological processes are evolving continuously over time. In this paper, we extend the g-computation and the doubly robust standardisation procedures to a continuous-time context. We compare their performance to the well-known inverse-probability-weighting estimator for the estimation of the hazard ratio and restricted mean survival times difference, using a simulation study. Under a correct model specification, all methods are unbiased, but g-computation and the doubly robust standardisation are more efficient than inverse-probability-weighting. We also analyse two real-world datasets to illustrate the practical implementation of these approaches. We have updated the R package RISCA to facilitate the use of these methods and their dissemination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.