Applying the theories of Materials Science and Engineering to describe the composition and hierarchy of microstructures that comprise biological systems could help the search for new materials and results in a deeper insight into evolutionary processes. The layered microstructure that makes up the freshwater bivalve Limnoperna fortunei shell, an invasive specie in Brazil, was investigated utilizing SEM and AFM for the determination of the morphology and organization of the layers; and XRD was used to determine the crystalline phases of the calcium carbonate (CaCO 3 ) present in the shell. The presence of the polymorphs calcite and aragonite were confirmed and the calcite is present only on the external side of the shell. The shell of L. fortunei is composed of two layers of aragonite with distinct microstructures (the aragonite prismatic layer and the aragonite sheet nacreous layer) and the periostracum (a protein layer that covers and protects the ceramic part of the shell). A new morphology of the calcite layer was found, below the periostracum, without defined form, albeit crystalline.
Aragonite is a metastable polymorph of calcium carbonate found in mollusk's shells, appearing in tiles and prismatic columns, cemented in a protein matrix -mainly proteins -that acts as a framework on which the aragonite is nucleated forming nacre, besides selecting the morphology of the nucleated cristaline phase. The presence of the mineralyzing organic matrix may affect osteoinductive properties of biogenic aragonite, hypothesis tested by combinated tests, comparing viability and bioactivity of biomineralizated aragonite and nacre. Bioactivity was observed by deposition of Ca-P (presumably calcium phosphate) on the surface of samples immersed in Simulated Body Fluid; biocompatibility was verified by adhesion with VERO cells; cytotoxicity and alkaline phosphatase activity assays were performed with human adipose stem cells (hASC). Samples were characterized by scanning electron microscopy and X-ray diffraction. Both materials showed similar behaviour on bioactivity assay; in contrast, exhibited different behaviours in the presence of hASC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.