Com a descoberta de que o tráfego da rede possui a característica de autossimilaridade, alguns estudos buscaram diminuí-la, pois essa característica causa alguns efeitos negativos, como maior atraso na fila e congestionamento do tráfego. Entre os fatores trabalhados nas últimas décadas estão algoritmos de gerenciamento de filas, como Random Early Detection (RED). No entanto, os pesquisadores não estudaram a influência do RED na auto-similaridade mais profundamente. Afinal, esse algoritmo possui quatro parâmetros configuráveis (o peso da fila, a probabilidade máxima de queda e os limiares mínimo e máximo), que, quando modificados, podem levar a uma alteração no desempenho e, consequentemente, na autossimilaridade. Portanto, este artigo pretende verificar a influência do RED na auto-similaridade. Para isso, desenvolvemos um padrão para auxiliar na configuração dos limiares de RED. Também, mostramos o impacto de diferentes arranjos de limite na autossimilaridade e no desempenho do tráfego de rede. Além disso, comparamos algumas das melhores configurações de RED com Droptail.
One of the ways to reduce inappropriate management of hives and monitor bee health is to send notifications/alerts about the data collected through sensors. This study presents BeeNotified!, a solution for sending notifications through Telegram, e-mail, and SMS. The notifications warn about the level of temperature, humidity, sound, carbon dioxide, oxygen, hive weight and delay in data gathering. From this data, researchers and beekeepers can be informed and make changes in the locations of the hives, avoiding catastrophes and possible diseases. The results obtained with the processing time in the sending of messages showed that the messages sent via SMS and Telegram have a shorter processing time compared to the sending via e-mail. In regards to sending notifications according to user preferences, all notifications were sent correctly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.