Surgical Data Science (SDS) is an emerging research domain offering data-driven answers to challenges encountered by clinicians during training and practice. We previously developed a framework to assess quality of practice based on two aspects: exposure of the surgical scene (ESS ) and the surgeon's profile of practice (SPP ). Here, we wished to investigate the clinical relevance of the parameters learned by this model by 1) interpreting these parameters and identifying associated representative video samples, 2) presenting this information to surgeons in the form of a video-enhanced questionnaire. To our knowledge, this is the first approach in the field of SDS for laparoscopy linking the choices made by a machine learning model predicting surgical quality to clinical expertise.Method. Spatial features and quality of practice scores extracted from labeled and segmented frames in 30 laparoscopic videos were used to predict the ESS and the SPP. The relationships between the inputs and outputs of the model were then analyzed and translated into meaningful sentences (statements, e.g. "To optimize the ESS, it is very important to correctly handle the spleen"). Representative video clips illustrating these statements were semiautomatically identified. Eleven statements and video clips were used in a sur-
Evaluating the quality of surgical procedures is a major concern in minimal invasive surgeries. We propose a bottom-up approach based on the study of Sleeve Gastrectomy procedures, for which we analyze what we assume to be an important indicator of the surgical expertise: the exposure of the surgical scene. We first aim at predicting this indicator with features extracted from the laparoscopic video feed. Second, to analyze how the extracted features describing the surgical practice influence this indicator. Method 29 patients underwent Sleeve Gastrectomy performed by two confirmed surgeons in a monocentric study. Features were extracted from spatial and procedural annotations of the videos, and an expert surgeon evaluated the quality of the surgical exposure at specific instants. The features were used as input of a classifier (linear discriminant analysis followed by a support vector machine) to predict the expertise indicator. Features selected in different configurations of the algorithm were compared to understand their relationships with the surgical exposure and the surgeon's practice. Results The optimized algorithm giving the best performance used spatial features as input (Acc = 0.68, Sn = 0.72, Sp = 0.7). It also predicted equally the two classes of the indicator, despite their strong imbalance. Analyzing the selection of input features in the algorithm allowed a comparison of different configurations of the algorithm and showed a link between the surgical exposure and the surgeon's practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.