words)Objective: The Covid-19 pandemic is rapidly spreading worldwide, notably in Europe and North America, where obesity is highly prevalent. The relation between obesity and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has not been fully documented.Methods: In this retrospective cohort study we analyzed the relationship between clinical characteristics, including body mass index (BMI), and the requirement for invasive mechanical ventilation (IMV) in 124 consecutive patients admitted in intensive care for SARS-CoV-2, in a single French center.Results : Obesity (BMI >30 kg/m2) and severe obesity (BMI >35 kg/m2) were present in 47.6% and 28.2% of cases, respectively. Overall, 85 patients (68.6%) required IMV. The proportion of patients who required IMV increased with BMI categories (p<0.01, Chi square test for trend), and it was greatest in patients with BMI >35 kg/m 2 (85.7%). In multivariate logistic regression, the need for IMV was significantly associated with male sex (p<0.05) and BMI (p<0.05), independent of age, diabetes, and hypertension. The odds ratio for IMV in patients with BMI >35 kg/m 2 vs patients with BMI <25 kg/m 2 was 7. 36 (1.63-33.14; p=0.02) Conclusion: The present study showed a high frequency of obesity among patients admitted in intensive care for SARS-CoV-2. Disease severity increased with BMI. Obesity is a risk factor for SARS-CoV-2 severity requiring increased attention to preventive measures in susceptible individuals. Accepted Article
IMPORTANCEThe benefit of high-dose dexamethasone and oxygenation strategies vs standard of care for patients with severe acute hypoxemic respiratory failure (AHRF) caused by COVID-19 pneumonia is debated.OBJECTIVES To assess the benefit of high-dose dexamethasone compared with standard of care dexamethasone, and to assess the benefit of high-flow nasal oxygen (HFNO 2 ) or continuous positive airway pressure (CPAP) compared with oxygen support standard of care (O 2 SC). DESIGN, SETTING, AND PARTICIPANTSThis multicenter, placebo-controlled randomized clinical trial was conducted in 19 intensive care units (ICUs) in France from April 2020 to January 2021. Eligible patients were consecutive ICU-admitted adults with COVID-19 AHRF. Randomization used a 2 × 3 factorial design for dexamethasone and oxygenation strategies; patients not eligible for at least 1 oxygenation strategy and/or already receiving invasive mechanical ventilation (IMV) were only randomized for dexamethasone. All patients were followed-up for 60 days. Data were analyzed from May 26 to July 31, 2021.INTERVENTIONS Patients received standard dexamethasone (dexamethasone-phosphate 6 mg/d for 10 days [or placebo prior to RECOVERY trial results communication]) or high-dose dexamethasone (dexamethasone-phosphate 20 mg/d on days 1-5 then 10 mg/d on days 6-10). Those not requiring IMV were additionally randomized to O 2 SC, CPAP, or HFNO 2 . MAIN OUTCOMES AND MEASURESThe main outcomes were time to all-cause mortality, assessed at day 60, for the dexamethasone interventions, and time to IMV requirement, assessed at day 28, for the oxygenation interventions. Differences between intervention groups were calculated using proportional Cox models and expressed as hazard ratios (HRs). RESULTS Among 841 screened patients, 546 patients (median [IQR] age, years; 414 [75.8%] men) were randomized between standard dexamethasone (276 patients, including 37 patients who received placebo) or high-dose dexamethasone (270 patients). Of these, 333 patients were randomized among O 2 SC (109 patients, including 56 receiving standard dexamethasone), CPAP (109 patients, including 57 receiving standard dexamethasone), and HFNO 2 (115 patients, including 56 receiving standard dexamethasone). There was no difference in 60-day mortality between standard and high-dose dexamethasone groups (HR, 0.96 [95% CI, 0.69-1.33]; P = .79). There was no significant difference for the cumulative incidence of IMV criteria at day 28 among O 2 support groups (O 2 SC vs CPAP: HR, 1.08 [95% CI, 0.71-1.63]; O 2 SC vs HFNO 2 : HR, 1.04 [95% CI, 0.69-1.55]) or 60-day mortality (O 2 SC vs CPAP: HR, 0.97 [95% CI, 0.58-1.61; O 2 SC vs HFNO 2 : HR, 0.89 [95% CI,). Interactions between interventions were not significant. CONCLUSIONS AND RELEVANCEIn this randomized clinical trial among ICU patients with COVID-19-related AHRF, high-dose dexamethasone did not significantly improve 60-day survival. The oxygenation strategies in patients who were not initially receiving IMV did not significantly modify 28-day risk of...
No study has compared patients with COVID-19-related refractory ARDS requiring veno-venous extracorporeal membrane oxygenation (V-V ECMO) to a relevant and homogenous control population. We aimed to compare the outcomes, the clinical characteristics, and the adverse effects of COVID-19 patients to a retrospective cohort of influenza patients. This retrospective case-control study was conducted in the ICUs of Lille and Rouen University Hospitals between January 2014 and May 2020. Two independent cohorts of patients with ARDS requiring V-V ECMO infected with either COVID-19 (n = 30) or influenza (n = 22) were compared. A 3-month follow-up was completed for all patients. Median age of COVID-19 and influenza patients was similar (57 vs. 55 years; p = 0.62). The 28-day mortality rate did not significantly differ between COVID-19 (43.3%) and influenza patients (50%, p = 0.63). There was no significant difference considering the cumulative incidence of ECMO weaning, hospital discharge, and 3-month survival. COVID-19 patients had a lower SAPS II score (58 [37–64] vs. 68 [52–83]; p = 0.039), a higher body mass index (33 [29–38] vs . 30 [26–34] kg/m 2 ; p = 0.05), and were cannulated later (median delay between mechanical support and V-V ECMO 6 vs. 3 days, p = 0.004) compared with influenza patients. No difference in overall adverse events was observed between COVID-19 and influenza patients (70% vs. 95.5% respectively; p = 0.23). Despite differences in clinical presentation before V-V ECMO implantation, 28-day and 3-month mortality rate did not differ between COVID-19 and influenza patients. Considering the lack of specific treatment for COVID-19, V-V ECMO should be considered as a relevant rescue organ support.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.