No study has compared patients with COVID-19-related refractory ARDS requiring veno-venous extracorporeal membrane oxygenation (V-V ECMO) to a relevant and homogenous control population. We aimed to compare the outcomes, the clinical characteristics, and the adverse effects of COVID-19 patients to a retrospective cohort of influenza patients. This retrospective case-control study was conducted in the ICUs of Lille and Rouen University Hospitals between January 2014 and May 2020. Two independent cohorts of patients with ARDS requiring V-V ECMO infected with either COVID-19 (n = 30) or influenza (n = 22) were compared. A 3-month follow-up was completed for all patients. Median age of COVID-19 and influenza patients was similar (57 vs. 55 years; p = 0.62). The 28-day mortality rate did not significantly differ between COVID-19 (43.3%) and influenza patients (50%, p = 0.63). There was no significant difference considering the cumulative incidence of ECMO weaning, hospital discharge, and 3-month survival. COVID-19 patients had a lower SAPS II score (58 [37–64] vs. 68 [52–83]; p = 0.039), a higher body mass index (33 [29–38] vs . 30 [26–34] kg/m 2 ; p = 0.05), and were cannulated later (median delay between mechanical support and V-V ECMO 6 vs. 3 days, p = 0.004) compared with influenza patients. No difference in overall adverse events was observed between COVID-19 and influenza patients (70% vs. 95.5% respectively; p = 0.23). Despite differences in clinical presentation before V-V ECMO implantation, 28-day and 3-month mortality rate did not differ between COVID-19 and influenza patients. Considering the lack of specific treatment for COVID-19, V-V ECMO should be considered as a relevant rescue organ support.
Sepsis-induced myopathy is characterized by muscle fiber atrophy, mitochondrial dysfunction, and worsened outcomes. Whether whole-body energy deficit participates in the early alteration of skeletal muscle metabolism has never been investigated. Three groups were studied: “Sepsis” mice, fed ad libitum with a spontaneous decrease in caloric intake (n = 17), and “Sham” mice fed ad libitum (Sham fed (SF), n = 13) or subjected to pair-feeding (Sham pair fed (SPF), n = 12). Sepsis was induced by the intraperitoneal injection of cecal slurry in resuscitated C57BL6/J mice. The feeding of the SPF mice was restricted according to the food intake of the Sepsis mice. Energy balance was evaluated by indirect calorimetry over 24 h. The tibialis anterior cross-sectional area (TA CSA), mitochondrial function (high-resolution respirometry), and mitochondrial quality control pathways (RTqPCR and Western blot) were assessed 24 h after sepsis induction. The energy balance was positive in the SF group and negative in both the SPF and Sepsis groups. The TA CSA did not differ between the SF and SPF groups, but was reduced by 17% in the Sepsis group compared with the SPF group (p < 0.05). The complex-I-linked respiration in permeabilized soleus fibers was higher in the SPF group than the SF group (p < 0.05) and lower in the Sepsis group than the SPF group (p < 0.01). Pgc1α protein expression increased 3.9-fold in the SPF mice compared with the SF mice (p < 0.05) and remained unchanged in the Sepsis mice compared with the SPF mice; the Pgc1α mRNA expression decreased in the Sepsis compared with the SPF mice (p < 0.05). Thus, the sepsis-like energy deficit did not explain the early sepsis-induced muscle fiber atrophy and mitochondrial dysfunction, but led to specific metabolic adaptations not observed in sepsis.
Objective. Our primary aim was to assess selected metabolic dysfunction parameters, both independently and as a complement to the SOFA score, as predictors of short-term mortality in patients with infection admitted to the intensive care unit (ICU). Methods. We retrospectively enrolled all consecutive adult patients admitted to the eight ICUs of Lille University Hospital, between January 2015 and September 2016, with suspected or confirmed infection. We selected seven routinely measured biological and clinical parameters of metabolic dysfunction (maximal arterial lactatemia, minimal and maximal temperature, minimal and maximal glycaemia, cholesterolemia, and triglyceridemia), in addition to age and the Charlson’s comorbidity score. All parameters and SOFA scores were recorded within 24 h of admission. Results. We included 956 patients with infection, among which 295 (30.9%) died within 90 days. Among the seven metabolic parameters investigated, only maximal lactatemia was associated with higher risk of 90-day hospital mortality in SOFA-adjusted analyses (SOFA-adjusted OR, 1.17; 95%CI, 1.10 to 1.25; p < 0.001 ). Age and the Charlson’s comorbidity score were also statistically associated with a poor prognosis in SOFA-adjusted analyses. We were thus able to develop a metabolic failure, age, and comorbidity assessment (MACA) score based on scales of lactatemia, age, and the Charlson’s score, intended for use in combination with the SOFA score. Conclusions. The maximal lactatemia level within 24 h of ICU admission is the best predictor of short-term mortality among seven measures of metabolic dysfunction. Our combined “SOFA + MACA” score could facilitate early detection of patients likely to develop severe infections. Its accuracy requires further evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.