Clostridium perfringens perfringolysin O (PFO or theta-toxin) is a cytolytic toxin that binds to cholesterol-containing membranes and then self-associates to spontaneously form aqueous pores of varying size in the bilayer. In this study, a membrane-spanning domain has been identified in PFO by a combination of fluorescence spectroscopic methods using the fluorescent dye N, N'-dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1, 3-diazolyl)ethylenediamine (NBD) whose emission properties are sensitive to water. PFO was substituted with a single cysteine at most of the residues between amino acids K189 and N218, and then each cysteine was modified with NBD. Each purified NBD-labeled PFO was then bound to membranes, and the probe's environment was ascertained by measuring its fluorescence lifetime, emission intensity, and collisional quenching with either aqueous (iodide ions) or nonaqueous (nitroxide-labeled phospholipids) quenchers. Lifetime and intensity measurements revealed that the amino acid side chains in this region of the membrane-bound PFO polypeptide alternated between being in an aqueous or a nonaqueous environment. This pattern indicates that this portion of the membrane-bound PFO spans the membrane in an antiparallel beta-sheet conformation. The alternating exposure of these residues to the hydrophobic interior of the bilayer was demonstrated by their susceptibility to quenching by nitroxide moieties attached to phospholipid acyl chains. Residues K189-N218 therefore form a two-stranded, amphipathic beta-sheet in the membrane-bound PFO that creates a stable interface between the pore and the membrane. This same region packs as three short alpha-helices in the soluble, monomeric form of PFO, and therefore, the cholesterol-dependent conversion of PFO to a membrane-bound oligomer involves a major structural transition in which three alpha-helices unfold to form a membrane-spanning amphipathic beta-sheet.
Fluorescence resonance energy transfer measurements reveal that a transmembrane sequence within a nascent membrane protein folds into a compact conformation near the peptidyltransferase center and remains folded as the sequence moves through a membrane bound ribosome into the translocon. This compact conformation is compatible with an alpha helix because nearly the same energy transfer efficiency was observed when the transmembrane sequence was integrated into the lipid bilayer. Since the transmembrane sequence unfolds upon emerging from a free ribosome, this nascent chain folding is ribosome induced and stabilized. In contrast, a nascent secretory protein is in an extended conformation in the exit tunnel. Furthermore, two ribosomal proteins photo-crosslink to nascent membrane but not secretory proteins. These interactions coincide with the previously described sequential closing and opening of the two ends of the aqueous translocon pore, thereby suggesting that ribosomal recognition of nascent chain folding controls the operational mode of the translocon at the ER membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.