Abstract. The remineralisation of sinking particles by prokaryotic heterotrophic activity is important for controlling oceanic carbon sequestration. Here, we report mesopelagic particulate organic carbon (POC) remineralisation fluxes in the North Atlantic along the GEOTRACES-GA01 section (GEOVIDE cruise; May–June 2014) using the particulate biogenic barium (excess barium; Baxs) proxy. Important mesopelagic (100–1000 m) Baxs differences were observed along the transect depending on the intensity of past blooms, the phytoplankton community structure, and the physical forcing, including downwelling. The subpolar province was characterized by the highest mesopelagic Baxs content (up to 727 pmol L−1), which was attributed to an intense bloom averaging 6 mg chl a m−3 between January and June 2014 and by an intense 1500 m deep convection in the central Labrador Sea during the winter preceding the sampling. This downwelling could have promoted a deepening of the prokaryotic heterotrophic activity, increasing the Baxs content. In comparison, the temperate province, characterized by the lowest Baxs content (391 pmol L−1), was sampled during the bloom period and phytoplankton appear to be dominated by small and calcifying species, such as coccolithophorids. The Baxs content, related to oxygen consumption, was converted into a remineralisation flux using an updated relationship, proposed for the first time in the North Atlantic. The estimated fluxes were of the same order of magnitude as other fluxes obtained using independent methods (moored sediment traps, incubations) in the North Atlantic. Interestingly, in the subpolar and subtropical provinces, mesopelagic POC remineralisation fluxes (up to 13 and 4.6 mmol C m−2 d−1, respectively) were equalling and occasionally even exceeding upper-ocean POC export fluxes, deduced using the 234Th method. These results highlight the important impact of the mesopelagic remineralisation on the biological carbon pump of the studied area with a near-zero, deep (> 1000 m) carbon sequestration efficiency in spring 2014.
Abstract. The distribution of dissolved aluminium (dAl) in the water column of the North Atlantic and Labrador Sea was studied along GEOTRACES section GA01 to unravel the sources and sinks of this element. Surface water dAl concentrations were low (median of 2.5 nM) due to low aerosol deposition and removal by biogenic particles (i.e. phytoplankton cells). However, surface water dAl concentrations were enhanced on the Iberian and Greenland shelves (up to 30.9 nM) due to continental inputs (rivers, glacial flour, and ice melt). Dissolved Al in surface waters scaled negatively with chlorophyll a and biogenic silica (opal) concentrations. The abundance of diatoms exerted a significant (p<0.01) control on the surface particulate Al (pAl) to dAl ratios by decreasing dAl levels and increasing pAl levels. Dissolved Al concentrations generally increased with depth and correlated strongly with silicic acid (R2>0.76) west of the Iberian Basin, suggesting net release of dAl at depth during remineralization of sinking opal-containing particles. Enrichment of dAl at near-bottom depths was observed due to the resuspension of sediments. The highest dAl concentrations (up to 38.7 nM) were observed in Mediterranean Outflow Waters, which act as a major source of dAl to mid-depth waters of the eastern North Atlantic. This study clearly shows that the vertical and lateral distributions of dAl in the North Atlantic differ when compared to other regions of the Atlantic and global oceans. Responsible for these large inter- and intra-basin differences are the large spatial variabilities in the main Al source, atmospheric deposition, and the main Al sink, particle scavenging by biogenic particles.
Abstract. The aim of the GEOVIDE cruise (May–June 2014, R/V Pourquoi Pas?) was to provide a better understanding of trace metal biogeochemical cycles in the North Atlantic Ocean. As marine particles play a key role in the global biogeochemical cycle of trace elements in the ocean, we discuss the distribution of particulate iron (PFe), in relation to the distribution of particulate aluminium (PAl), manganese (PMn), and phosphorus (PP). Overall, 32 full vertical profiles were collected for trace metal analyses, representing more than 500 samples. This resolution provides a solid basis for assessing concentration distributions, elemental ratios, size fractionation, and adsorptive scavenging processes in key areas of the thermohaline overturning circulation. Total particulate iron concentrations ranged from as low as 9 pmol L−1 in surface waters of the Labrador Sea to 304 nmol L−1 near the Iberian margin, while median PFe concentrations of 1.15 nmol L−1 were measured over the sub-euphotic ocean interior. Within the Iberian Abyssal Plain, the ratio of PFe to PAl was identical to the continental crust molar ratio (0.21 mol mol−1), indicating the important influence of crustal particles in the water column. Overall, the lithogenic component explained more than 87% of PFe variance along the section. Within the Irminger and Labrador basins, the formation of biogenic particles led to an increase in the PFe∕PAl ratio (up to 0.64 mol mol−1) compared to the continental crust ratio. Continental margins induce high concentrations of particulate trace elements within the surrounding water masses (up to 10 nmol L−1 of PFe). For example, horizontal advection of PFe was visible more than 250 km away from the Iberian margin. Additionally, several benthic nepheloid layers were observed more than 200 m above the seafloor along the transect, especially in the Icelandic, Irminger, and Labrador basins, suspending particles with high PFe content of up to 89 nmol L−1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.