The ionization dynamics in geometrically symmetric parallel plate capacitively coupled plasmas driven by radio frequency tailored voltage waveforms is investigated using phase resolved optical emission spectroscopy (PROES) and particle-in-cell (PIC) simulations. Temporally asymmetric waveforms induce spatial asymmetries and offer control of the spatiotemporal dynamics of electron heating and associated ionization structures. Sawtooth waveforms with different rise and fall rates are employed using truncated Fourier series approximations of an ideal sawtooth. Experimental PROES results obtained in argon plasmas are compared with PIC simulations, showing excellent agreement. With waveforms comprising a fast voltage drop followed by a slower rise, the faster sheath expansion in front of the powered electrode causes strongly enhanced ionization in this region. The complementary waveform causes an analogous effect in front of the grounded electrode.
Tailored voltage excitation waveforms provide an eficient control of the ion energy (through the electrical asymmetry effect) in capacitive plasmas by varying the 'amplitude' asymmetry of the waveform. In this work, the effect of a 'slope' asymmetry of the waveform is investigated by using sawtooth-like waveforms, through which the sheath dynamic can be manipulated. A remarkably different discharge dynamic is found for Ar, H 2 , and CF 4 gases, which is explained by the different dominant electron heating mechanisms and plasma chemistries. In comparison to Argon we ind that the electrical asymmetry can even be reversed by using an electronegative gas such as CF 4. Phase resolved optical emission spectroscopy measurements, probing the spatiotemporal distribution of the excitation rate show excellent agreement with the results of particle-in-cell simulations, conirming the high degree of correlation between the excitation rates with the dominant heating mechanisms in the various gases. It is shown that, depending on the gas used, sawtooth-like voltage waveforms may cause a strong asymmetry.
The impact of changing surface condition on plasma dynamics and electron heating is investigated by means of numerical simulations, based on a semi-kinetic fluid model approach, and compared with measurements of the nanosecond electron dynamics in the plasma-surface interface region using phase resolved optical emission spectroscopy (PROES). The simulations are conducted in a one-dimensional domain and account for a geometrical asymmetry comparable to the experimental setup of a radio-frequency driven capacitively coupled plasma in a gaseous electronics conference reference cell. A simple reaction scheme is considered, including electrons, + O 2 positive ions, − O negative ions and ( Δ) O 2 1 metastable singlet delta oxygen (SDO) as individual species. The role of surface loss and effective lifetime of SDO is discussed. To simulate different surface conditions, the SDO surface loss probability and the secondary electron emission coefficient were varied in the model. It is found that a change in surface condition significantly influences the metastable concentration, electronegativity, spatial particle distributions and densities as well as the ionization and electron heating dynamics. The excitation dynamics obtained from simulations are compared with PROES measurements. This allows to determine experimentally relevant SDO surface loss probabilities and secondary electron emission coefficient values in-situ and is demonstrated for two different surface materials, namely aluminum and Teflon.
Plasma parameters and dynamics in capacitively coupled oxygen plasmas are investigated for different surface conditions. Metastable species concentration,electronegativity, spatial distribution of particle densities as well as the ionization dynamics are significantly influenced by the surface loss probability of metastable singlet delta oxygen (SDO). Simulated surface conditions are compared to experiments in the plasma-surface interface region using phase resolved optical emission spectroscopy. It is demonstrated how in-situ measurements of excitation features can be used to determine SDO surface loss probabilities for different surface materials.
The efficient generation of reactive oxygen species (ROS) in cold atmospheric pressure plasma jets (APPJs) is an increasingly important topic, e.g. for the treatment of temperature sensitive biological samples in the field of plasma medicine. A 13.56 MHz radio-frequency (rf) driven APPJ device operated with helium feed gas and small admixtures of oxygen (up to 1%), generating a homogeneous glow-mode plasma at low gas temperatures, was investigated. Absolute densities of ozone, one of the most prominent ROS, were measured across the 11 mm wide discharge channel by means of broadband absorption spectroscopy using the Hartley band centred at λ=255 nm. A two-beam setup with a reference beam in Mach-Zehnder configuration is employed for improved signal-to-noise ratio allowing high-sensitivity measurements in the investigated single-pass weakabsorbance regime. The results are correlated to gas temperature measurements, deduced from the rotational temperature of the N 2 (C 3 P + u B 3 P + g , υ=0 2) optical emission from introduced air impurities. The observed opposing trends of both quantities as a function of rf power input and oxygen admixture are analysed and explained in terms of a zero-dimensional plasma-chemical kinetics simulation. It is found that the gas temperature as well as the densities of O and O 2 (b S + g 1 ) influence the absolute O 3 densities when the rf power is varied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.