Germanium telluride undergoes rapid transition between polycrystalline and amorphous states under either optical or electrical excitation. While the crystalline phases are predicted to be semiconductors, polycrystalline germanium telluride always exhibits p-type metallic conductivity. We present a study of the electronic structure and formation energies of the vacancy and antisite defects in both known crystalline phases. We show that these intrinsic defects determine the nature of free-carrier transport in crystalline germanium telluride. Germanium vacancies require roughly one-third the energy of the other three defects to form, making this by far the most favorable intrinsic defect. While the tellurium antisite and vacancy induce gap states, the germanium counterparts do not. A simple counting argument, reinforced by integration over the density of states, predicts that the germanium vacancy leads to empty states at the top of the valence band, thus giving a complete explanation of the observed p-type metallic conduction.
Molecular hydrogen is alternately introduced into and removed from the gate oxide of irradiated metal-oxide-semiconductor field-effect transistors at room temperature by changing the ambient between forming gas (10/90% H2/N2) and nitrogen. Using charge pumping, it is observed that H2 causes a simultaneous buildup of interface states and decrease of trapped positive charge. The results are explained by a reaction sequence in which H2 is cracked to form mobile H+, which under positive bias drifts to the Si/SiO2 interface, and reacts to produce a dangling-bond defect. The rate limiting step over most of the time domain studied is the cracking process. Two types of cracking sites are modeled by molecular orbital calculations: oxygen vacancies (E′ centers) and broken bond hole traps (BBHTs). Initial- and final-state energies, as well as the activation energies, are calculated. The calculations indicate that the latter is the more likely H2 cracking site. The combined experimental and theoretical results suggest that at least 15% of the trapped positive charge is at sites similar to the BBHT sites. Implications of the model and similarities between interface-state formation by cracked H2 and irradiation are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.