The effect of the nature of the π-conjugated linker that is positioned between electron-deficient 2,5-dihydropyrrolo[3,4- c ]pyrrole-1,4-dione (DPP) and electron-rich dithieno[3,2- b :2′,3′- d ]pyrrole (DTP) units in alternating DPP–DTP copolymers on the optical and electrochemical band gaps and the effective exciton binding energy is investigated for six different aromatic linkers. The optical band gap is related to the electron-donating properties of DTP and the electron-withdrawing properties of DPP but likewise strongly affected by the nature of the linker and varies between 1.13 and 1.80 eV for the six different linkers. The lowest optical band gaps are found for linkers that either raise the highest occupied molecular orbital or lower the lowest unoccupied molecular orbital most, while the highest optical band gap is found for phenyl linkers that have neither strong donating nor strong accepting properties. Along with the optical band gap, the electrochemical band gap also changes, but to a lesser extent from 1.46 to 1.89 eV. The effective exciton binding energy ( E b ), defined as the difference between the electrochemical and optical band gaps, decreases with an increasing band gap and reaches a minimum of 0.09 eV for the copolymer with the highest band gap, that is, with phenyl linkers. The reduction in E b with an increasing band gap is tentatively explained by a reduced electronic interaction between the DTP and DPP units when the HOMO localizes on DTP and the LUMO localizes on DPP. Support for this explanation is found in the molar absorption coefficient of the copolymers, which shows an overall decreasing trend with decreasing E b .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.