Reliable forecasts for the dispersion of oceanic contamination are important for coastal ecosystems, society, and the economy as evidenced by the Deepwater Horizon oil spill in the Gulf of Mexico in 2010 and the Fukushima nuclear plant incident in the Pacific Ocean in 2011. Accurate prediction of pollutant pathways and concentrations at the ocean surface requires understanding ocean dynamics over a broad range of spatial scales. Fundamental questions concerning the structure of the velocity field at the submesoscales (100 m to tens of kilometers, hours to days) remain unresolved due to a lack of synoptic measurements at these scales. Using high-frequency position data provided by the near-simultaneous release of hundreds of accurately tracked surface drifters, we study the structure of submesoscale surface velocity fluctuations in the Northern Gulf of Mexico. Observed two-point statistics confirm the accuracy of classic turbulence scaling laws at 200-m to 50-km scales and clearly indicate that dispersion at the submesoscales is local, driven predominantly by energetic submesoscale fluctuations. The results demonstrate the feasibility and utility of deploying large clusters of drifting instruments to provide synoptic observations of spatial variability of the ocean surface velocity field. Our findings allow quantification of the submesoscale-driven dispersion missing in current operational circulation models and satellite altimeter-derived velocity fields.T he Deepwater Horizon (DwH) incident was the largest accidental oil spill into marine waters in history with some 4.4 million barrels released into the DeSoto Canyon of the northern Gulf of Mexico (GoM) from a subsurface pipe over ∼84 d in the spring and summer of 2010 (1). Primary scientific questions, with immediate practical implications, arising from such catastrophic pollutant injection events are the path, speed, and spreading rate of the pollutant patch. Accurate prediction requires knowledge of the ocean flow field at all relevant temporal and spatial scales. Whereas ocean general circulation models were widely used during and after the DwH incident (2-6), such models only capture the main mesoscale processes (spatial scale larger than 10 km) in the GoM. The main factors controlling surface dispersion in the DeSoto Canyon region remain unclear. The region lies between the mesoscale eddy-driven deep water GoM (7) and the winddriven shelf (8) while also being subject to the buoyancy input of the Mississippi River plume during the spring and summer months (9). Images provided by the large amounts of surface oil produced in the DwH incident revealed a rich array of flow patterns (10) showing organization of surface oil not only by mesoscale straining into the loop current "Eddy Franklin," but also by submesoscale processes. Such processes operate at spatial scales and involve physics not currently captured in operational circulation models. Submesoscale motions, where they exist, can directly influence the local transport of biogeochemical tracers (11, 12) ...
Pelagic plant life draws its principal supply of dissolved or undissolved nitrogen either from the coasts or from localities where warm and cold currents meet." J. Hjort "Where cold and warm currents meet at the surface of the ocean there is a rise of temperature for the animals of the cold current and a fall of temperature for the animals of the warm current, which results in a plentiful destruction of organisms." Sir John Murray "We are well acquainted with the stream in our pursuit of whales, which keep to the sides of it but are not met within it."
An hierarchy of ocean models is used to investigate the dynamics of the eastward surface jets that develop along the Indian Ocean equator during the spring and fall, the Wyrtki jets (WJs). The models vary in dynamical complexity from 2½-layer to 4½-layer systems, the latter including active thermodynamics, mixed layer physics, and salinity. To help identify processes, both linear and nonlinear solutions are obtained at each step in the hierarchy. Specific processes assessed are as follows: direct forcing by the wind, reflected Rossby waves, resonance, mixed layer shear, salinity effects, and the influence of the Maldive Islands. In addition, the sensitivity of solutions to forcing by different wind products is reported. Consistent with previous studies, the authors find that direct forcing by the wind is the dominant forcing mechanism of the WJs, accounting for 81% of their amplitude when there is a mixed layer. Reflected Rossby waves, resonance, and mixed layer shear are all necessary to produce jets with realistic strength and structure. Completely new results are that precipitation during the summer and fall considerably strengthens the fall WJ in the eastern ocean by thinning the mixed layer, and that the Maldive Islands help both jets to attain roughly equal strengths. In both the ship-drift data and the authors' ''best'' solution (i.e., the solution to the highest model in the authors' hierarchy), the semiannual response is more than twice as large as the annual one, even though the corresponding wind components have comparable amplitudes. Causes of this difference are as follows: the complex zonal structure of the annual wind, which limits the directly forced response at the annual frequency; resonance with the semiannual wind; and mixed layer shear flow, which interferes constructively (destructively) with the rest of the response for the semiannual (annual) component. Even in the most realistic solution, however, the annual component still weakens the fall WJ and strengthens the spring one in the central ocean, in contrast to the ship-drift data; this model/data discrepancy may result from model deficiencies, inaccurate driving winds, or from windage errors in the ship-drift data themselves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.