Wiener model identification and predictive control of a pH neutralisation process is presented. Input-output data from a nonlinear, first principles simulation model of the pH neutralisation process are used for subspace-based identification of a black-box Wiener-type model. The proposed nonlinear subspace identification method has the advantage of delivering a Wiener model in a format which is suitable for its use in a standard linear-model-based predictive control scheme. The identified Wiener model is used as the internal model in a model predictive controller (MPC) which is used to control the nonlinear white-box simulation model. To account for the unmeasurable disturbance, a nonlinear observer is proposed. The performance of the Wiener model predictive control (WMPC) is compared with that of a linear MPC, and with a more traditional feedback control, namely a PID control. Simulation results show that the WMPC outperforms the linear MPC and the PID controllers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.