Photonics is a promising platform for demonstrating a quantum computational advantage (QCA) by outperforming the most powerful classical supercomputers on a well-defined computational task. Despite this promise, existing proposals and demonstrations face challenges. Experimentally, current implementations of Gaussian boson sampling (GBS) lack programmability or have prohibitive loss rates. Theoretically, there is a comparative lack of rigorous evidence for the classical hardness of GBS. In this work, we make progress in improving both the theoretical evidence and experimental prospects. We provide evidence for the hardness of GBS, comparable to the strongest theoretical proposals for QCA. We also propose a QCA architecture we call high-dimensional GBS, which is programmable and can be implemented with low loss using few optical components. We show that particular algorithms for simulating GBS are outperformed by high-dimensional GBS experiments at modest system sizes. This work thus opens the path to demonstrating QCA with programmable photonic processors.
Self-testing has been a rich area of study in quantum information theory. It allows an experimenter to interact classically with a black box quantum system and to test that a specific entangled state was present and a specific set of measurements were performed. Recently, self-testing has been central to high-profile results in complexity theory as seen in the work on entangled games PCP of Natarajan and Vidick \cite{low-degree}, iterated compression by Fitzsimons et al. \cite{iterated-compression}, and NEEXP in MIP* due to Natarajan and Wright \cite{neexp}. The most studied self-test is the CHSH game which features a bipartite system with two isolated devices. This game certifies the presence of a single EPR entangled state and the use of anti-commuting Pauli measurements. Most of the self-testing literature has focused on extending these results to self-test for tensor products of EPR states and tensor products of Pauli measurements.In this work, we introduce an algebraic generalization of CHSH by viewing it as a linear constraint system (LCS) game, exhibiting self-testing properties that are qualitatively different. These provide the first example of LCS games that self-test non-Pauli operators resolving an open questions posed by Coladangelo and Stark \cite{RobustRigidityLCS}. Our games also provide a self-test for states other than the maximally entangled state, and hence resolves the open question posed by Cleve and Mittal \cite{BCSTensor}. Additionally, our games have 1 bit question and logn bit answer lengths making them suitable candidates for complexity theoretic application. This work is the first step towards a general theory of self-testing arbitrary groups. In order to obtain our results, we exploit connections between sum of squares proofs, non-commutative ring theory, and the Gowers-Hatami theorem from approximate representation theory. A crucial part of our analysis is to introduce a sum of squares framework that generalizes the solution group of Cleve, Liu, and Slofstra \cite{BCSCommuting} to the non-pseudo-telepathic regime. Finally, we give the first example of a game that is not a self-test. Our results suggest a richer landscape of self-testing phenomena than previously considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.