Dedicated to Heinrich Voss on the Occasion of His 65th Birthday.Abstract. This paper is concerned with iterative solution methods for large linear systems of equations with a matrix of ill-determined rank and an error-contaminated right-hand side. The numerical solution is delicate, because the matrix is very ill-conditioned and may be singular. It is natural to require that the computed iterates live in the range of the matrix when the latter is symmetric, because then the iterates are orthogonal to the null space. Computational experience indicates that it can be beneficial to require that the iterates live in the range of the matrix also when the latter is nonsymmetric. We discuss the design and implementation of iterative methods that determine iterates with this property. New implementations that are particularly well suited for use with the discrepancy principle are described.
Large linear discrete ill-posed problems with contaminated data are often solved with the aid of Tikhonov regularization. Commonly used regularization matrices are finite difference approximations of a suitable derivative and are rectangular. This paper discusses the design of square regularization matrices that can be used in iterative methods based on the Arnoldi process for large-scale Tikhonov regularization problems
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.