as plasmonic hot-spots. [2] The resulting spectroscopic technique, known as surface-enhanced Raman spectroscopy (SERS), [3] surpasses the inherently low sensitivity of Raman by counterbalancing its low scattering efficiency [4] through spatial localization of the sample molecules proximal to the hot-spots on SERS substrates. So far colloidal nanoparticles of various shapes and sizes have been extensively used in SERS; [5][6][7][8][9] however, the lack of control over their relative orientation and separation limits efficient plasmonic coupling therebetween. [10] While this issue is addressed in SERS substrates made of immobilized nanoparticles, [11][12][13][14] interparticle gaps in these substrates are typically optimized to generate maximum field confinement for single wavelengths. Broadband SERS substrates can be made by immobilizing a mixture of nanoparticles resonant over a range of laser wavelengths on surface plasmon polariton (SPP)-supporting thin films. [15,16] However, the magnitude of SERS signal enhancement and the broadband nature of such substrates remain highly dependent on the nanoparticle-film separation as well as the interparticle distances which are difficult to control in practice. More robust broadband SERS substrates have been recently fabricated by sputtering randomly sized silver nanoparticles on glass-silver-glass multilayered substrates, [17] yielding plasmonic resonances over the 400-1100 nm
Rainbow light trapping in plasmonic devices allows for field enhancement of multiple wavelengths within a single device. However, many of these devices lack precise control over spatial and spectral enhancement profiles and cannot provide extremely high localised field strengths. Here we present a versatile, analytical design paradigm for rainbow trapping in nanogroove arrays by utilising both the groove-width and groove-length as tuning parameters. We couple this design technique with fabrication through multilayer thin-film deposition and focused ion beam milling, which enables the realisation of unprecedented feature sizes down to 5 nm and corresponding extreme normalised local field enhancements up to 103. We demonstrate rainbow trapping within the devices through hyperspectral microscopy and show agreement between the experimental results and simulation. The combination of expeditious design and precise fabrication underpins the implementation of these nanogroove arrays for manifold applications in sensing and nanoscale optics.
Trapping broadband electromagnetic radiation over a subwavelength grating, provides new opportunities for hyperspectral light-matter interaction on a nanometer scale. Previous efforts have shown rainbow-trapping is possible on functionally graded structures. Here, we propose groove width as a new gradient parameter for designing rainbow-trapping gratings and define the range of its validity. We articulate the correlation between the width of narrow grooves and the overlap or the coupling of the evanescent surface plasmon fields within the grooves. In the suitable range (≲150 nm), this width parameter becomes as important as other known parameters such as groove depth and materials composition, but tailoring groove widths is remarkably more feasible in practice. Using groove width as a design parameter, we investigate rainbow-trapping gratings and derive an analytical formula by treating each nano-groove as a plasmonic waveguide resonator. These results closely agree with numerical simulations.
We delineate the four principal surface plasmon polariton coupling and interaction mechanisms in subwavelength gratings, and demonstrate their significant roles in shaping the optical response of plasmonic gratings. Within the framework of width-graded metal–insulator-metal nano-gratings, electromagnetic field confinement and wave guiding result in multiwavelength light localization provided conditions of adiabatic mode transformation are satisfied. The field is enhanced further through fine tuning of the groove-width (w), groove-depth (L) and groove-to-groove-separation (d). By juxtaposing the resonance modes of width-graded and non-graded gratings and defining the adiabaticity condition, we demonstrate the criticality of w and d in achieving adiabatic mode transformation among the grooves. We observe that the resonant wavelength of a graded grating corresponds to the properties of a single groove when the grooves are adiabatically coupled. We show that L plays an important function in defining the span of localized wavelengths. Specifically, we show that multiwavelength resonant modes with intensity enhancement exceeding three orders of magnitude are possible with w < 30 nm and 300 nm < d < 900 nm for a range of fixed values of L. This study presents a novel paradigm of deep-subwavelength adiabatically-coupled width-graded gratings—illustrating its versatility in design, hence its viability for applications ranging from surface enhanced Raman spectroscopy to multispectral imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.