Background Coronavirus disease 2019 (COVID-19)-associated acute kidney injury (AKI) frequency, severity and characterization in critically ill patients has not been reported. Methods Single-centre cohort performed from 3 March 2020 to 14 April 2020 in four intensive care units in Bordeaux University Hospital, France. All patients with COVID-19 and pulmonary severity criteria were included. AKI was defined using Kidney Disease: Improving Global Outcomes (KDIGO) criteria. A systematic urinary analysis was performed. The incidence, severity, clinical presentation, biological characterization (transient versus persistent AKI; proteinuria, haematuria and glycosuria) and short-term outcomes were evaluated. Results Seventy-one patients were included, with basal serum creatinine (SCr) of 69 ± 21 µmol/L. At admission, AKI was present in 8/71 (11%) patients. Median [interquartile range (IQR)] follow-up was 17 (12–23) days. AKI developed in a total of 57/71 (80%) patients, with 35% Stage 1, 35% Stage 2 and 30% Stage 3 AKI; 10/57 (18%) required renal replacement therapy (RRT). Transient AKI was present in only 4/55 (7%) patients and persistent AKI was observed in 51/55 (93%). Patients with persistent AKI developed a median (IQR) urine protein/creatinine of 82 (54–140) (mg/mmol) with an albuminuria/proteinuria ratio of 0.23 ± 20, indicating predominant tubulointerstitial injury. Only two (4%) patients had glycosuria. At Day 7 after onset of AKI, six (11%) patients remained dependent on RRT, nine (16%) had SCr >200 µmol/L and four (7%) had died. Day 7 and Day 14 renal recovery occurred in 28% and 52%, respectively. Conclusion Severe COVID-19-associated AKI is frequent, persistent, severe and characterized by an almost exclusive tubulointerstitial injury without glycosuria.
Introduction Gut microbiota is associated with host characteristics such as age, sex, immune condition or frailty and is thought to be a key player in numerous human diseases. Nevertheless, its association with outcome in critically ill patients has been poorly investigated. The aim of this study is to assess the association between gut microbiota composition and Day-28 mortality in critically ill patients. Methods Rectal swab at admission of every patient admitted to intensive care unit (ICU) between October and November 2019 was frozen at − 80 °C. DNA extraction was performed thanks to QIAamp® PowerFecal® Pro DNA kit (QIAgen®). V3–V4 regions of 16SRNA and ITS2 coding genes were amplified by PCR. Sequencing (2x250 bp paired-end) was performed on MiSeq sequencer (Illumina®). DADA2 pipeline on R software was used for bioinformatics analyses. Risk factors for Day-28 mortality were investigated by logistic regression. Results Fifty-seven patients were consecutively admitted to ICU of whom 13/57 (23%) deceased and 44/57 (77%) survived. Bacteriobiota α-diversity was lower among non-survivors than survivors (Shannon and Simpson index respectively, p < 0.001 and p = 0.001) as was mycobiota α-diversity (respectively p = 0.03 and p = 0.03). Both gut bacteriobiota and mycobiota Shannon index were independently associated with Day-28 mortality in multivariate analysis (respectively OR: 0.19, 97.5 CI [0.04–0.60], p < 0.01 and OR: 0.29, 97.5 CI [0.09–0.75], p = 0.02). Bacteriobiota β-diversity was significantly different between survivors and non-survivors (p = 0.05) but not mycobiota β-diversity (p = 0.57). Non-survivors had a higher abundance of Staphylococcus haemolyticus, Clostridiales sp., Campylobacter ureolyticus, Akkermansia sp., Malassezia sympodialis, Malassezia dermatis and Saccharomyces cerevisiae, whereas survivors had a higher abundance of Collinsella aerofaciens, Blautia sp., Streptococcus sp., Faecalibacterium prausnitzii and Bifidobacterium sp. Conclusion The gut bacteriobiota and mycobiota α diversities are independently associated with Day-28 mortality in critically ill patients. The causal nature of this interference and, if so, the underlying mechanisms should be further investigated to assess if gut microbiota modulation could be a future therapeutic approach.
IntroductionCoronavirus disease 2019 (COVID-19) can cause life-threatening acute respiratory distress syndrome (ARDS). Recent data suggest a role for neutrophil extracellular traps (NETs) in COVID-19-related lung damage partly due to microthrombus formation. Besides, pulmonary embolism (PE) is frequent in severe COVID-19 patients, suggesting that immunothrombosis could also be responsible for increased PE occurrence in these patients. Here, we evaluate whether plasma levels of NET markers measured shorty after admission of hospitalized COVID-19 patients are associated with clinical outcomes in terms of clinical worsening, survival, and PE occurrence.Patients and MethodsNinety-six hospitalized COVID-19 patients were included, 50 with ARDS (severe disease) and 46 with moderate disease. We collected plasma early after admission and measured 3 NET markers: total DNA, myeloperoxidase (MPO)–DNA complexes, and citrullinated histone H3. Comparisons between survivors and non-survivors and patients developing PE and those not developing PE were assessed by Mann–Whitney test.ResultsAnalysis in the whole population of hospitalized COVID-19 patients revealed increased circulating biomarkers of NETs in patients who will die from COVID-19 and in patients who will subsequently develop PE. Restriction of our analysis in the most severe patients, i.e., the ones who enter the hospital for COVID-19-related ARDS, confirmed the link between NET biomarker levels and survival but not PE occurrence.ConclusionOur results strongly reinforce the hypothesis that NETosis is an attractive therapeutic target to prevent COVID-19 progression but that it does not seem to be linked to PE occurrence in patients hospitalized with COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.