In this publication, the cooling fluid for direct oil-cooled electric traction drive is investigated. A dedicated thermal resistance model was developed in order to show the influence of the fluid properties on the continuous performance. For this purpose, the heat transfer parameters are adjusted in the simulation using an exponential approach in order to evaluate the cooling fluid. In a sensitivity study, density, heat capacity, thermal conductivity, and viscosity are investigated. Because viscosity, within the range investigated, shows the largest percentage deviation from the reference fluid, the greatest effect on performance can be seen here. In order to check the plausibility of the calculated results of the thermal simulation, two fluids were chosen for performance testing on a dedicated electro motor cooling (EMC) test. Beyond the investigation of heat transfer, aging of the defined fluid at maximum heat input over several hours is also evaluated. Only slight changes of the fluid properties are detected. This publication presents a thermal model for direct oil-cooled drive trains, which consider fluid properties. Furthermore, the model was tested for plausibility on real hardware.
Power Electronic (PE) will play an essential role in future drive concepts. Nowadays, mainly water/glycol-based cooling media are used to cool PE. Due to their high electrical conductivity (EC), water/glycol-based coolants cannot be used for direct cooling of the electrical components. Direct cooling concepts with dedicated transmission fluids show potential usage of fluid in direct contact with electrified parts. This results in special requirements for the fluids and materials. The aimed action as a coolant requires a defined measurement and characterization of fluid properties and heat transfer in order to assess the cooling ability of a fluid. The purpose of the work was to develop a new measurement setup based on the thermal transient method with which the thermal requirements of cooling fluids for a direct cooling concept can be assessed. With this method, relevant transmission fluids have been tested and the thermal performance compared to indirect cooling effect of water/glycol is discussed. The result of the work is that the measurement method is very well suited for the application-related evaluation of the fluids. Direct oil cooling with transmission fluids could increase heat transfer coefficient by a factor of 3 to 8, compared to the indirect cooing with water/glycol as cooling media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.