Background ADHD is classically seen as a childhood disease, although it persists in one out of two cases in adults. The diagnosis is based on a long and multidisciplinary process, involving different health professionals, leading to an under-diagnosis of adult ADHD individuals. We therefore present a psychometric screening scale for the identification of adult ADHD which could be used both in clinical and experimental settings. Method We designed the scale from the DSM-5 and administered it to n = 110 control individuals and n = 110 ADHD individuals. The number of items was reduced using multiple regression procedures. We then performed factorial analyses and a machine learning assessment of the predictive power of the scale in comparison with other clinical scales measuring common ADHD comorbidities. Results Internal consistency coefficients were calculated satisfactorily for TRAQ10, with Cronbach’s alpha measured at .9. The 2-factor model tested was confirmed, a high correlation between the items and their belonging factor. Finally, a machine-learning analysis showed that classification algorithms could identify subjects’ group membership with high accuracy, statistically superior to the performances obtained using comorbidity scales. Conclusions The scale showed sufficient performance for its use in clinical and experimental settings for hypothesis testing or screening purpose, although its generalizability is limited by the age and gender biases present in the data analyzed.
Motion perception is affected by healthy aging, which impairs the ability of older adults to perform some daily activities such as driving. The current study investigated the underlying causes of age-related motion contrast sensitivity losses by using an equivalent noise paradigm to decompose motion contrast sensitivity into calculation efficiency, the temporal modulation transfer function (i.e., temporal blur) and 3 sources of internal noise: stochastic absorption of photons by photoreceptors (i.e., photon noise), neural noise occurring at the retinal level (i.e., early noise) and at the cortical level (i.e., late noise). These sources of internal noise can be disentangled because there impacts on motion contrast sensitivity vary differently as a function of luminance intensity. The impact of healthy aging on these factors was evaluated by measuring motion contrast sensitivity of young and older healthy adults at different luminance intensities, temporal frequencies and with/without external noise. The older adults were found to have higher photon noise, which suggests a lower photon absorption rate of cones. When roughly equating the amount of photons being absorbed by the photoreceptors, older adults had lower calculation efficiencies, but no significant aging effect was found on temporal modulation transfer function, early noise and late noise.
Background The SF-36 is a generic quality of life questionnaire, massively translated and widely used to obtain physical and mental health status. However, validation work in the French language was carried out over a generation ago. The objective of this study was to obtain the norms of the SF-36 in the French young population. Method The sample consisted of 1134 non-pre-screened French people aged between 18 and 39 years. Results The internal consistencies of the scales were high and the metrics associated with the factor structure were satisfactory. In general, women presented significantly higher scores than men. Conclusion Our results suggest that the SF-36 remains a reliable tool for studying quality of life in the young French population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.