Auditory models are commonly used as feature extractors for automatic speech-recognition systems or as front-ends for robotics, machine-hearing and hearing-aid applications. Although auditory models can capture the biophysical and nonlinear properties of human hearing in great detail, these biophysical models are computationally expensive and cannot be used in real-time applications. We present a hybrid approach where convolutional neural networks are combined with computational neuroscience to yield a real-time end-to-end model for human cochlear mechanics, including level-dependent filter tuning (CoNNear). The CoNNear model was trained on acoustic speech material and its performance and applicability were evaluated using (unseen) sound stimuli commonly employed in cochlear mechanics research. The CoNNear model accurately simulates human cochlear frequency selectivity and its dependence on sound intensity, an essential quality for robust speech intelligibility at negative speech-to-background-noise ratios. The CoNNear architecture is based on parallel and differentiable computations and has the power to achieve real-time human performance. These unique CoNNear features will enable the next generation of human-like machine-hearing applications.
Biophysically realistic models of the cochlea are based on cascaded transmission-line (TL) models which capture longitudinal coupling, cochlear nonlinearities, as well as the human frequency selectivity. However, these models are slow to compute (order of seconds/minutes) while machine-hearing and hearing-aid applications require a real-time solution. Consequently, real-time applications often adopt more basic and less time-consuming descriptions of cochlear processing (gammatone, dual resonance nonlinear) even though there are clear advantages in using more biophysically correct models. To overcome this, we recently combined nonlinear Deep Neural Networks (DNN) with analytical TL cochlear model descriptions to build a real-time model of cochlear processing which captures the biophysical properties associated with the TL model. In this work, we aim to extend the normal-hearing DNN-based cochlear model (CoNNear) to simulate frequency-specific patterns of hearing sensitivity loss, yielding a set of normal and hearing-impaired auditory models which can be computed in real-time and are differentiable. They can hence be used in backpropagation networks to develop the next generation of hearing-aid and machine hearing applications.
Although hearing aids (HAs) can compensate for elevated hearing thresholds using sound amplification, they often fail to restore auditory perception in adverse listening conditions. To achieve robust treatment outcomes for diverse HA users, we use a differentiable framework that can compensate for impaired auditory processing based on a biophysically realistic and personalisable auditory model. Here, we present a deep-neural-network (DNN) HA processing strategy that can provide individualised sound processing for the audiogram of a listener using a single model architecture. The DNN architecture was trained to compensate for different audiogram inputs and was able to enhance simulated responses and intelligibility even for audiograms that were not part of training. Our multi-purpose HA model can be used for different individuals and can process audio inputs of 3.2 ms in <0.5 ms, thus paving the way for precise DNN-based treatments of hearing loss that can be embedded in hearing devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.