A key unsolved question in the current coronavirus disease 2019 (COVID-19) pandemic is the duration of acquired immunity. Insights from infections with the four seasonal human coronaviruses might reveal common characteristics applicable to all human coronaviruses. We monitored healthy individuals for more than 35 years and determined that reinfection with the same seasonal coronavirus occurred frequently at 12 months after infection. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus responsible for an ongoing pandemic. To date, there is limited evidence of reinfection by SARS-CoV-2, although it is generally assumed that reinfections by coronaviruses occur. To prepare for future waves of Coronavirus Disease 2019 (COVID-19), it is important to elucidate the duration of protection to reinfection for which the seasonal coronaviruses might serve as an informative model. There are four species of seasonal coronaviruses-HCoV-NL63, HCoV-229E, HCoV-OC43 and HCoV-HKU1-that all can cause respiratory tract infections but
In the current SARS-CoV-2 pandemic a key unsolved question is the quality and duration of acquired immunity in recovered individuals. This is crucial to solve, however SARS-CoV-2 has circulated for under five months, precluding a direct study. We therefore monitored 10 subjects over a time span of 35 years , providing a total of 2473 follow up person-months, and determined a) their antibody levels following infection by any of the four seasonal human coronaviruses, and b) the time period after which reinfections by the same virus can occur. An alarmingly short duration of protective immunity to coronaviruses was found by both analyses. We saw frequent reinfections at 12 months post-infection and substantial reduction in antibody levels as soon as 6 months post-infection.
Identifying the causative pathogen in central nervous system (CNS) infections is crucial for patient management and prognosis. Many viruses can cause CNS infections, yet screening for each individually is costly and time-consuming. Most metagenomic assays can theoretically detect all pathogens, but often fail to detect viruses because of their small genome and low viral load. Viral metagenomics overcomes this by enrichment of the viral genomic content in a sample. VIDISCA-NGS is one of the available workflows for viral metagenomics, which requires only a small input volume and allows multiplexing of multiple samples per run. The performance of VIDISCA-NGS was tested on 45 cerebrospinal fluid (CSF) samples from patients with suspected CNS infections in which a virus was identified and quantified by polymerase chain reaction. Eighteen were positive for an RNA virus, and 34 for a herpesvirus. VIDISCA-NGS detected all RNA viruses with a viral load >2 × 104 RNA copies/mL (n = 6) and 8 of 12 of the remaining low load samples. Only one herpesvirus was identified by VIDISCA-NGS, however, when withholding a DNase treatment, 11 of 18 samples with a herpesvirus load >104 DNA copies/mL were detected. Our results indicate that VIDISCA-NGS has the capacity to detect low load RNA viruses in CSF. Herpesvirus DNA in clinical samples is probably non-encapsidated and therefore difficult to detect by VIDISCA-NGS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.