The threat of heavy metal pollution to environmental health is getting worldwide attention due to their persistence and non-biodegradable nature. Ineffectiveness of various physicochemical methods due to economical and technical constraints resulted in the search for a cost-effective and eco-friendly biological technique for heavy metal removal from the environment. The two effective biotic methods used are biosorption and bioaccumulation. A comparison between these two processes demonstrated that biosorption is a better heavy metal removal process than bioaccumulation. This is due to the intoxication of heavy metal by inhibiting their entry into the microbial cell. Genes and enzymes related to bioremoval process are also discussed. On comparing the removal rate, bacteria are surpassed by algae and fungi. The aim of this review is to understand the biotic processes and to compare their metal removal efficiency.
Rhizobacteria may enhance biomass production and heavy metal tolerance of plants under stress conditions. The present study was carried out for isolation of metalresistant bacteria that can be further utilized for phytoremediation process. A potential metal-resistant strain CRB15 was isolated from rhizospheric region of Saccharum spontaneum that was found to be resistant against Cu (6.29 mM), Zn (3.25 mM), Pb (1.5 mM), Ni (1.25 mM), and Cd (0.25 mM). SEM analysis was performed for evaluation of morphological changes on bacterial isolate. FTIR analysis observed the change in wavenumbers after the addition of Cu. 16S rDNA sequence analysis showed that CRB15 isolate matched best with genus of Kocuria and was named as Kocuria sp. CRB15. The isolate Kocuria sp. CRB15 was a potential plant growth-promoting rhizobacterium as it had a high IAA (46 lg ml -1 ), P solubilisation (39.37 lg ml -1 ), ammonia production (30.46 lmol ml -1 ), and hydrogen cyanide production capacity. Root-shoot elongation assay conducted on Brassica nigra under lab conditions with strain CRB15 demonstrated positive effects of strain CRB15 in root and shoot elongation of Cu-treated seedlings. This study proved the Kocuria sp. CRB15 a potential PGPR for bacterialassisted phytoremediation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.