Available renewable energy resources play a vital role in fulfilling the energy demands of the increasing global population. To create a sustainable urban environment with the use of renewable energy in human habitats, a precise estimation of solar energy on building roofs is essential. The primary goal of this paper is to develop a procedure for measuring the rooftop solar energy photovoltaic potential over a heterogeneous urban environment that allows the estimation of solar energy yields on flat and pitched roof surfaces at different slopes and in different directions, along with multi-segment roofs on a single building. Because of the complex geometry of roofs, very high-resolution data, such as ortho-rectified aerial photography (orthophotos), and LiDAR data have been used to generate a new object-based algorithm to classify buildings. An overall accuracy index and a Kappa index of agreement (KIA) of 97.39% and 0.95, respectively, were achieved. The paper also develops a new model to create an aspect-slope map, which combines slope orientation with the gradient of the slope and uses it to demonstrate the collective results. This study allows the assessment of solar energy yields through defining solar irradiances in units of pixels over a specific time period. It might be beneficial in terms of more efficient measurements for solar panel installations and more accurate calculations of solar radiation for residents and commercial energy investors.
Vegetation state is usually assessed by calculating vegetation indices (VIs) derived from remote sensing systems where the near infrared (NIR) band is used to enhance the vegetation signal. However VIs are pixel-based and require both visible and NIR bands. Yet, most archived photographs were obtained with cameras that record only the three visible bands. Attempts to construct VIs with the visible bands alone have shown only limited success, especially in drylands. The current study identifies vegetation patches in the hyperarid Israeli desert using only the visible bands from aerial photographs by adapting an alternative geospatial object-based image analysis (GEOBIA) routine, together with recent improvements in preprocessing. The preprocessing step selects a balanced threshold value for image segmentation using unsupervised parameter optimization. Then the images undergo two processes: segmentation and classification. After tallying modeled vegetation patches that overlap true tree locations, both true positive and false positive rates are obtained from the classification and receiver operating characteristic (ROC) curves are plotted. The results show successful identification of vegetation patches in multiple zones from each study area, with area under the ROC curve values between 0.72 and 0.83.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.