The coupling of magnetic and mechanical fields due to the constitutive behavior of a material is commonly denoted as magnetostrictive effect. The latter is only observed with large coupling coefficients in ferromagnetic materials, where coupling is caused by the rotation of the domains as a result of magnetic (Joule effect) or mechanical (Villari effect) loads. However, only a few elements (e.g. Fe, Ni, Co, and Mn) and their compositions exhibit such a behavior. In this article, the constitutive modeling of nonlinear ferromagnetic behavior under combined magnetomechanical loading as well as the finite element implementation is presented. Both physically and phenomenologically motivated constitutive models have been developed for the numerical calculation of principally different nonlinear magnetostrictive behaviors. On this basis, magnetization, strain, and stress are predicted, and the resulting effects are analyzed. The phenomenological approach covers reversible nonlinear behavior as it is observed, for example, in cobalt ferrite. Numerical simulations based on the physically motivated model focus on the calculation of hysteresis loops and the prediction of local domain orientations and residual stress going along with the magnetization process. Finally, a model for ferroelectric materials is applied in connection with the physically based ferromagnetic approach, in order to predict magnetoelectric coupling coefficients in multifunctional composite.
A constitutive modelling of ferromagnetic materials under combined magnetomechanical multiaxial loading with different boundary conditions and a finite element implementation are presented. The phenomenologically motivated model is capable of predicting magnetisation, strain, and stress and is thus suitable, e.g., for applications in multiferroic composites. The approach covers a reversible nonlinear behaviour as it is observed, e.g., in cobalt ferrite and other soft magnetic alloys. Various examples demonstrate the suitability of the model and its numerical implementation and give an insight into the behaviour of soft magnets, exposed to different boundary conditions or being embedded into other compliant materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.