Porosity and chirality are two of the most important properties for materials in the chemical and pharmaceutical industry. Inorganic microporous materials such as zeolites have been widely used in ion-exchange, selective sorption/separation and catalytic processes. The pore size and shape in zeolites play important roles for specific applications. Chiral inorganic microporous materials are particularly desirable with respect to their possible use in enantioselective sorption, separation and catalysis. At present, among the 179 zeolite framework types reported, only three exhibit chiral frameworks. Synthesizing enantiopure, porous tetrahedral framework structures represents a great challenge for chemists. Here, we report the silicogermanates SU-32 (polymorph A), SU-15 (polymorph B) (SU, Stockholm University) and a hypothetical polymorph C, all built by different stacking of a novel building layer. Whereas polymorphs B and C are achiral, each crystal of polymorph A exhibits only one hand and has an intrinsically chiral zeolite structure. SU-15 and SU-32 are thermally stable on calcination.
Structured zeolite 13X monoliths with a laminated structure and hierarchical macro-/microporosity were prepared by freeze-casting aqueous suspensions of zeolite 13X powder, bentonite, and polyethylene glycol. Colloidally stable suspensions with a low viscosity at both room temperature and near freezing could be prepared at alkaline conditions where both the zeolite 13X powder and bentonite carry a negative surface charge. Slow directional freezing of the suspensions led to the formation of well-defined and thin lamellar pores and pore walls while fast freezing resulted in more cylindrical pores. The wall thickness, which varied between 8 and 35 μm, increased with increasing solids loading of the suspension. Thermal treatment at 1053 K of the freeze-cast bodies containing between 9 and 17 wt % bentonite resulted in mechanically stable zeolite 13X monoliths. The monoliths displayed a carbon dioxide uptake capacity of 4-5 mmol/g and an uptake kinetics characterized by a very fast initial uptake where more than 50% of the maximum uptake was reached within 15 s. Freeze-cast laminated zeolite monoliths could be used to improve the volumetric efficiency and reduce the cycle time, of importance in, for example, biogas upgrading and CO2 separation from flue gas.
Zeolite NaA nanocrystals with a narrow particle size distribution were prepared by template-free hydrothermal synthesis in thermo-reversible methylcellulose gels. The effects of the amount of methylcellulose, crystallization time and hydrothermal treatment temperature on the crystallinity and particle size distribution of the zeolite NaA nanocrystals were investigated. We found that the thermogelation of methylcellulose in the alkaline Na2O-SiO2-Al2O3-H2O system played an important role in controlling the particle size. The synthesized zeolite nanocrystals are highly crystalline, as demonstrated by X-ray diffraction (XRD), and scanning electron microscopy (SEM) shows that the nanocrystals can also display a well-defined facetted morphology. Gas adsorption studies on the synthesized nanocrystalline zeolite NaA showed that nanocrystals with a size of 100 nm displayed a high CO2 uptake capacity (4.9 mmol/g at 293 K at 100 kPa) and a relatively rapid uptake rate compared to commercially available, micron-sized particles. Low-cost nanosized zeolite adsorbents with a high and rapid uptake are important for large scale gas separation processes, e.g., carbon capture from flue gas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.