Furthermore, hydrogels exhibited self-healing ability, being able to be broken apart and reformed manually into a single continuous piece without additional external stimuli. This behaviour was attributed to the break-down and reformation of hydrogen bonds within the hydrogel. NFC fibrils contributed towards enhancing gel content and retarding swelling, essentially restricting segmental motion and water penetration. Increasing borax content had a similar effect due to closer PVA chain proximity and higher crosslink density. Compressive mechanical properties were enhanced with additions of up to 40 %·wt NFC and increased borax concentrations, while creep was retarded due to the influence of NFC on flow and viscosity and greater chain restrictions via crosslinking at increased borax loadings. Both PVA:borax complexes (crosslinking) and hydrogen bonding contribute to the mechanical performance of the hydrogels. Concentrations of NFC above 40 %·wt diminished structural properties, due to the nanofibrils preventing effective crosslinking and disrupting the network structure of the hydrogels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.