An asymmetric n-alkyl substitution pattern was realized in 2-tridecyl[1]benzothieno[3,2-b][1]benzothiophene (C(13)-BTBT) in order to improve the charge transport properties in organic thin-film transistors. We obtained large hole mobilities up to 17.2 cm(2)/(V·s) in low-voltage operating devices. The large mobility is related to densely packed layers of the BTBT π-systems at the channel interface dedicated to the substitution motif and confirmed by X-ray reflectivity measurements. The devices exhibit promising stability in continuous operation for several hours in ambient air.
A three-pronged approach has been used to design rational improvements in self-assembled monolayer field-effect transistors: classical molecular dynamics (MD) simulations to investigate atomistic structure, large-scale quantum mechanical (QM) calculations for electronic properties, and device fabrication and characterization as the ultimate goal. The MD simulations reveal the effect of using two-component monolayers to achieve intact dielectric insulating layers and a well-defined semiconductor channel. The QM calculations identify improved conduction paths in the monolayers that consist of an optimum mixing ratio of the components. These results have been used both to confirm the predictions of the calculations and to optimize real devices. Monolayers were characterized with X-ray reflectivity measurements and by electronic characterization of complete devices.
Self-assembled monolayer field-effect transistors (SAMFETs) of BTBT functionalized phosphonic acids are fabricated. The molecular design enables device operation with charge carrier mobilities up to 10(-2) cm(2) V(-1) s(-1) and for the first time SAMFETs which operate on rough, flexible PEN substrates even under mechanical substrate bending.
Self-assembled monolayers (SAMs) have been established as crucial interlayers and electronically active layers in organic electronic devices, such as organic light emitting diodes (OLEDs), organic photovoltaics (OPVs), organic thin film transistors (OTFTs), and nonvolatile memories (NVMs). The use of self-assembling functionalized organic molecules is beneficial due to mainly three advantages compared with common thin film deposition approaches. (1) Molecular self-assembly occurs with surface selectivity, determined by the interaction between the functional anchor group of the organic molecules and the target surface. (2) The film thickness of the resulting layers is perfectly controllable on the angstrom scale, due to the self-terminating film formation to only a single molecular layer. And finally, (3) the wide variability in the chemical structure of such molecules enables different SAM functionalities for devices, ranging from electrical insulation to charge storage to charge transport. The SAM approach can be further expanded by employing several functionalized molecules to create mixed SAMs with consequently mixed properties. The function of SAMs in devices depends not only on the chemical structure of the molecules but also on their final arrangement and orientation on the surface. A reliable and nondestructive in-depth characterization of SAMs on nonconductive oxide surfaces is still challenging because of the very small thickness and the impracticality of methods such as scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). In this Account, we illustrate how X-ray reflectivity (XRR) provides analytical access to major questions of SAM composition, morphology, and even formation by means of investigations of pure and mixed SAMs based on phosphonic acids (PAs) of various chain structures on flat alumina (AlOx) surfaces. XRR is an analytical method that provides access to spatially averaged structural depth profiles over a relatively large area of several square micrometers. The key outcome of XRR, the surface-normal electron density profile of the SAMs, leads to precise information on the SAM thickness with subangstrom resolution and allows for the determination of molecular tilt angles and packing densities. We have systematically increased the chemical complexity of PA molecules and the resulting SAMs, utilizing XRR to provide insight into the SAM structures. In SAMs composed of functionalized molecules or complex chain structures, the distribution of electron rich and electron poor signatures is detected and thus the molecular order within the SAM is determined. In mixed SAMs of two different molecular species, electron density profiles reveal the morphology and how the surface-normal structure changes if one component of the mixed SAM is altered. Furthermore, XRR was applied to investigate in situ the self-assembly of functionalized PA molecules from solution by tracking the monolayer growth over time. Even though the results provided by XRR on in-plane molecular arrangement a...
The control of order in organic semiconductor systems is crucial to achieve desired properties in electronic devices. We have studied the order in fullerene functionalized self-assembled monolayers by mixing the active molecules with supporting alkyl phosphonic acids of different chain length. By adjusting the length of the molecules, structural modifications of the alignment of the C 60 head groups within the SAM can be tuned in a controlled way. These changes on the sub-nanometre scale were analysed by grazing incidence X-ray diffraction and X-ray reflectivity. To study the electron transport properties across these layers, self-assembled monolayer field-effect transistors (SAMFETs) were fabricated containing only the single fullerene monolayer as semiconductor. Electrical measurements revealed that a high 2D crystalline order is not the only important aspect. If the fullerene head groups are too confined by the supporting alkyl phosphonic acid molecules, defects in the crystalline C 60 film, such as grain boundaries, start to strongly limit the charge transport properties. By close interpretation of the results of structural investigations and correlating them to the results of electrical characterization, an optimum chain length of the supporting alkyl phosphonic acids in the range of C 10 was determined. With this study we show that minor changes in the order on the sub-nanometre scale, can strongly influence electronic properties of functional self-assembled monolayers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.