We design an Enriched Deep Recurrent Visual Attention Model (EDRAM) -an improved attention-based architecture for multiple object recognition. The proposed model is a fully differentiable unit that can be optimized end-to-end by using Stochastic Gradient Descent (SGD). The Spatial Transformer (ST) was employed as visual attention mechanism which allows to learn the geometric transformation of objects within images. With the combination of the Spatial Transformer and the powerful recurrent architecture, the proposed EDRAM can localize and recognize objects simultaneously. EDRAM has been evaluated on two publicly available datasets including MNIST Cluttered (with 70K cluttered digits) and SVHN (with up to 250k real world images of house numbers). Experiments show that it obtains superior performance as compared with the state-of-the-art models.
In recent years, text recognition has achieved remarkable success in recognizing scanned document text. However, word recognition in natural images is still an open problem, which generally requires time consuming post-processing steps. We present a novel architecture for individual word detection in scene images based on semantic segmentation. Our contributions are twofold: the concept of WordFence, which detects border areas surrounding each individual word and a novel pixelwise weighted softmax loss function which penalizes background and emphasizes small text regions. Word-Fence ensures that each word is detected individually, and the new loss function provides a strong training signal to both text and word border localization. The proposed technique avoids intensive post-processing, producing an end-to-end word detection system. We achieve superior localization recall on common benchmark datasets -92% recall on ICDAR11 and ICDAR13 and 63% recall on SVT. Furthermore, our end-toend word recognition system achieves state-of-the-art 86% F-Score on ICDAR13.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.