This review presents an overview of the thermal properties of mesoscopic structures. The discussion is based on the concept of electron energy distribution, and, in particular, on controlling and probing it. The temperature of an electron gas is determined by this distribution: refrigeration is equivalent to narrowing it, and thermometry is probing its convolution with a function characterizing the measuring device. Temperature exists, strictly speaking, only in quasiequilibrium in which the distribution follows the Fermi-Dirac form. Interesting nonequilibrium deviations can occur due to slow relaxation rates of the electrons, e.g., among themselves or with lattice phonons. Observation and applications of nonequilibrium phenomena are also discussed. The focus in this paper is at low temperatures, primarily below 4 K, where physical phenomena on mesoscopic scales and hybrid combinations of various types of materials, e.g., superconductors, normal metals, insulators, and doped semiconductors, open up a rich variety of device concepts. This review starts with an introduction to theoretical concepts and experimental results on thermal properties of mesoscopic structures. Then thermometry and refrigeration are examined with an emphasis on experiments. An immediate application of solid-state refrigeration and thermometry is in ultrasensitive radiation detection, which is discussed in depth. This review concludes with a summary of pertinent fabrication methods of presented devices.
We propose a mesoscopic kinetic-inductance radiation detector based on a long superconductor-normal metal-superconductor Josephson junction. The operation of this proximity Josephson sensor relies on large kinetic inductance variations under irradiation due to the exponential temperature dependence of the critical current. Coupled with a dc superconducting quantum interference device readout, the PJS is able to provide a signal to noise (S/N) ratio up to similar to 10(3) in the terahertz regime if operated as calorimeter, while electrical noise equivalent power as low as similar to 7x10(-20) W/root Hz at 200 mK can be achieved in the bolometer operation. The high performance together with the ease of fabrication make this structure attractive as an ultrasensitive cryogenic detector of terahertz electromagnetic radiation. (C) 2008 American Institute of Physics
We describe the construction and performance of a passive, real-time terahertz camera based on a modular, 64-element linear array of cryogenic hotspot microbolometers. A reflective conical scanner sweeps out a 2 m x 4 m (vertical x horizontal) field of view (FOV) at a standoff range of 8 m. The focal plane array is cooled to 4 K in a closed cycle refrigerator, and the signals are detected on free-standing bridges of superconducting Nb or NbN at the feeds of broadband planar spiral antennas. The NETD of the focal-plane array, referred to the target plane and to a frame rate of 5 s(-1), is 1.25 K near the center of the array and 2 K overall.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.