Doxorubicin (DOX) is a chemotherapeutic agent commonly used for the treatment of solid tumors. However, the cardiotoxicity associated with its prolonged use prevents further adherence and therapeutic efficacy. By encapsulating DOX within a PEGylated liposome, Doxil® considerably decreased DOX cardiotoxicity. By using thermally sensitive lysolipids in its bilayer composition, ThermoDox® implemented a heat-induced controlled release of DOX. However, both ThermoDox® and Doxil® rely on their passive retention in tumors, depending on their half-lives in blood. Moreover, ThermoDox® ordinarily depend on invasive radiofrequency-generating metallic probes for local heating. In this study, we prepare, characterize, and evaluate the antitumoral capabilities of DOX-loaded folate-targeted PEGylated magnetoliposomes (DFPML). Unlike ThermoDox®, DOX delivery via DFPML is mediated by the heat released through dynamic hysteresis losses from magnetothermal converting systems composed by MnFe2O4 nanoparticles (NPs) under AC magnetic field excitation—a non-invasive technique designated magnetic hyperthermia (MHT). Moreover, DFPML dismisses the use of thermally sensitive lysolipids, allowing the use of simpler and cheaper alternative lipids. MnFe2O4 NPs and DFPML are fully characterized in terms of their size, morphology, polydispersion, magnetic, and magnetothermal properties. About 50% of the DOX load is released from DFPML after 30 min under MHT conditions. Being folate-targeted, in vitro DFPML antitumoral activity is higher (IC50 ≈ 1 μg/ml) for folate receptor-overexpressing B16F10 murine melanoma cells, compared to MCF7 human breast adenocarcinoma cells (IC50 ≈ 4 μg/ml). Taken together, our results indicate that DFPML are strong candidates for folate-targeted anticancer therapies based on DOX controlled release.
Objectives Bioactive molecules derived from natural products combine the ability to absorb UV light and act as antioxidants. We developed an oil‐based sucupira (native species of the Brazilian cerrado) nanoemulsion (NE) using a high‐energy emulsification method and assessed its effectiveness in vitro. Methods An easily scalable high‐pressure homogenization method was used to prepare the formulation. NE droplets mean diameter, pH, stability, conductivity and morphology were analysed. Formulation bioactivity was assessed using HaCaT cells. Key findings The formulation presented suitable pH and size for topic administration and was stable for over 90 days upon storage at 4, 25 and 45°C. The NE showed protective effect against oxidative stress and reduced levels of UVA‐induced pro‐inflammatory cytokines IL‐6 and IL‐8. Conclusions A novel, stable and easily prepared formulation was obtained for encapsulation of sucupira oil. The protective effect of the formulation by cytokine inhibition in the early stage of the inflammatory process was shown in vitro. Combined with the antioxidant effect by inhibition of reactive oxygen species, the use of sucupira oil NE for prevention and treatment of UVA‐induced stress could contribute to decrease the effects of UV radiation on skin ageing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.