Humans are a vision-dominated species; what we perceive depends on where we look. Therefore, eye movements (EMs) are essential to our interactions with the environment, and experimental findings show EMs are affected in neurodegenerative disorders (ND). This could be a reason for some cognitive and movement disorders in ND. Therefore, we aim to establish whether changes in EM-evoked responses can tell us about the progression of ND, such as Alzheimer’s (AD) and Parkinson’s diseases (PD), in different stages. In the present review, we have analyzed the results of psychological, neurological, and EM (saccades, antisaccades, pursuit) tests to predict disease progression with machine learning (ML) methods. Thanks to ML algorithms, from the high-dimensional parameter space, we were able to find significant EM changes related to ND symptoms that gave us insights into ND mechanisms. The predictive algorithms described use various approaches, including granular computing, Naive Bayes, Decision Trees/Tables, logistic regression, C-/Linear SVC, KNC, and Random Forest. We demonstrated that EM is a robust biomarker for assessing symptom progression in PD and AD. There are navigation problems in 3D space in both diseases. Consequently, we investigated EM experiments in the virtual space and how they may help find neurodegeneration-related brain changes, e.g., related to place or/and orientation problems. In conclusion, EM parameters with clinical symptoms are powerful precision instruments that, in addition to their potential for predictions of ND progression with the help of ML, could be used to indicate the different preclinical stages of both diseases.
Parkinson’s disease (PD) is the second after Alzheimer’s most popular neurodegenerative disease (ND). Cures for both NDs are currently unavailable. OBJECTIVE: The purpose of our study was to predict the results of different PD patients’ treatments in order to find an optimal one. METHODS: We have compared rough sets (RS) and others, in short, machine learning (ML) models to describe and predict disease progression expressed as UPDRS values (Unified Parkinson’s Disease Rating Scale) in three groups of Parkinson’s patients: 23 BMT (Best Medical Treatment) patients on medication; 24 DBS patients on medication and on DBS therapy (Deep Brain Stimulation) after surgery performed during our study; and 15 POP (Postoperative) patients who had had surgery earlier (before the beginning of our research). Every PD patient had three visits approximately every six months. The first visit for DBS patients was before surgery. On the basis of the following condition attributes: disease duration, saccadic eye movement parameters, and neuropsychological tests: PDQ39 (Parkinson’s Disease Questionnaire - disease-specific health-related quality-of-life questionnaire), and Epworth Sleepiness Scale tests we have estimated UPDRS changes (as the decision attribute). RESULTS: By means of RS rules obtained for the first visit of BMT/DBS/POP patients, we have predicted UPDRS values in the following year (two visits) with global accuracy of 70% for both BMT visits; 56% for DBS, and 67%, 79% for POP second and third visits. The accuracy obtained by ML models was generally in the same range, but it was calculated separately for different sessions (MedOFF/MedON). We have used RS rules obtained in BMT patients to predict UPDRS of DBS patients; for the first session DBSW1: global accuracy was 64%, for the second DBSW2: 85% and the third DBSW3: 74% but only for DBS patients during stimulation-ON. ML models gave better accuracy for DBSW1/W2 session S1(MedOFF): 88%, but inferior results for session S3 (MedON): 58% and 54%. Both RS and ML could not predict UPDRS in DBS patients during stimulation-OFF visits because of differences in UPDRS. By using RS rules from BMT or DBS patients we could not predict UPDRS of POP group, but with certain limitations (only for MedON), we derived such predictions for the POP group from results of DBS patients by using ML models (60%). SIGNIFICANCE: Thanks to our RS and ML methods, we were able to predict Parkinson’s disease (PD) progression in dissimilar groups of patients with different treatments. It might lead, in the future, to the discovery of universal rules of PD progression and optimise the treatment.
Humans are a vision-dominated species, and what we see depends on where we look. Therefore, eye movements (EM) are essential to our interactions with the environment, and experimental findings show EM is affected in neurodegenerative disorders (ND). It could be a reason for some cognitive and movement disorders in ND. Therefore, we aim to determine if changes in EM-evoked responses can tell us about ND, such as Alzheimer’s (AD) and Parkinson’s Disease (PD) progression in different stages. In the present review, we have analyzed the results of neurological, psychological, and EM (saccades, antisaccades, pursuit) tests to predict disease progression with Machine Learning (ML) methods. Described predictive algorithms are using various approaches, including Granular Computing, Naive Bayes, Decision Trees/Tables, Logistic Regression, C-/LinearSVC, KNC, and Random Forest. We demonstrated that EM is a robust biomarker for assessing symptom progression in PD and AD. There are also navigation problems in 3D space in both diseases. Consequently, we investigated EM experiments in the virtual space and how they may help find neurodegeneration-related brain changes. In conclusion: EM parameters with clinical symptoms are powerful precision instruments that, in addition to predictions of ND progression with the help of ML, could be used to indicate the different preclinical stages of both diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.