Downstream analysis of genomic and transcriptomic sequence data is often executed by functional annotation that can be performed by various bioinformatics tools and biological databases. However, a full fast integrated tool is not available for such analysis. Besides, the current available software is not able to produce analytic lists of annotations and graphs to help users in evaluating the output results. Therefore, we present the Gene Ontology Functional Enrichment Annotation Tool (GO FEAT), a free web platform for functional annotation and enrichment of genomic and transcriptomic data based on sequence homology search. The analysis can be customized and visualized as per users’ needs and specifications. GO FEAT is freely available at http://computationalbiology.ufpa.br/gofeat/ and its source code is hosted at https://github.com/fabriciopa/gofeat.
The Brazilian Microbiome Project (BMP) aims to assemble a Brazilian Metagenomic Consortium/Database. At present, many metagenomic projects underway in Brazil are widely known. Our goal in this initiative is to co-ordinate and standardize these together with new projects to come. It is estimated that Brazil hosts approximately 20 % of the entire world's macroorganism biological diversity. It is 1 of the 17 countries that share nearly 70 % of the world's catalogued animal and plant species, and is recognized as one of the most megadiverse countries. At the end of 2012, Brazil has joined GBIF (Global Biodiversity Information Facility), as associated member, to improve the access to the Brazilian biodiversity data in a free and open way. This was an important step toward increasing international collaboration and clearly shows the commitment of the Brazilian government in directing national policies toward sustainable development. Despite its importance, the Brazilian microbial diversity is still considered to be largely unknown, and it is clear that to maintain ecosystem dynamics and to sustainably manage land use, it is crucial to understand the biological and functional diversity of the system. This is the first attempt to collect and collate information about Brazilian microbial genetic and functional diversity in a systematic and holistic manner. The success of the BMP depends on a massive collaborative effort of both the Brazilian and international scientific communities, and therefore, we invite all colleagues to participate in this project.
BackgroundAn extended outbreak of mycobacterial surgical infections occurred in Brazil during 2004–2008. Most infections were caused by a single strain of Mycobacterium abscessus subsp. bolletii, which was characterized by a specific rpoB sequevar and two highly similar pulsed-field gel electrophoresis (PFGE) patterns differentiated by the presence of a ∼50 kb band. The nature of this band was investigated.Methodology/Principal FindingsGenomic sequencing of the prototype outbreak isolate INCQS 00594 using the SOLiD platform demonstrated the presence of a 56,264-bp circular plasmid, designated pMAB01. Identity matrices, genetic distances and phylogeny analyses indicated that pMAB01 belongs to the broad-host-range plasmid subgroup IncP-1β and is highly related to BRA100, pJP4, pAKD33 and pB10. The presence of pMAB01-derived sequences in 41 M. abscessus subsp. bolletii isolates was evaluated using PCR, PFGE and Southern blot hybridization. Sixteen of the 41 isolates showed the presence of the plasmid. The plasmid was visualized as a ∼50-kb band using PFGE and Southern blot hybridization in 12 isolates. The remaining 25 isolates did not exhibit any evidence of this plasmid. The plasmid was successfully transferred to Escherichia coli by conjugation and transformation. Lateral transfer of pMAB01 to the high efficient plasmid transformation strain Mycobacterium smegmatis mc2155 could not be demonstrated.Conclusions/SignificanceThe occurrence of a broad-host-range IncP-1β plasmid in mycobacteria is reported for the first time. Thus, genetic exchange could result in the emergence of specific strains that might be better adapted to cause human disease.
We proposed a modification the procedure of genotyping based in labeled universal primer and tailed primer. In the standard protocol, three primers are used in the same PCR reaction, a forward primer with tail added at the 5' end of the identical sequence to labeled universal primer with dye-fluorescent and a reverse primer. Unfortunately, the choice of a labeled primer characterized by a large number of complementary sequences in target genomes (which is more probable in larger genomes) result in unspecific amplifications (false positive) can cause absence or decrease amplification of the locus of interest and also false interpretation of the analysis. However, identification of possible homologies between the primer chosen for labelling and the genome is rarely possible from the available DNA data bases. In our approach, cycling is interrupted for the addition of the labeled primer only during the final cycles, thus minimizing unspecific amplification and competition between primers, resulting in the more fidelity amplification of the target regions.
This study involves the comparison between the exoproteomes of two different strains of Corynebacterium pseudotuberculosis, the etiologic agent of caseous lymphadenitis in small ruminants. In a previous study, based on a gel-free system (TPP-LC/MS(E)), 70 exoproteins for the strain 1002 and 67 for the strain C231, totaling 93 different extracellular proteins for C. pseudotuberculosis, were identified. In the present work, we have used 2D gel electrophoresis to resolve the extracellular proteins of both strains, which were then digested with trypsin, analyzed by MALDI-TOF/TOF and identified with the software MASCOT(®). A total of 45 extracellular proteins of C. pseudotuberculosis were identified by this approach. The comparative analysis between the strains 1002 and C231 identified 13 and 3 strain-specific proteins, respectively, 11 of which are novel. These newly identified proteins may play an important role in the physiology and virulence of C. pseudotuberculosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.