The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of a major global outbreak of respiratory tract disease known as coronavirus disease-2019 (COVID-19). SARS-CoV-2 infects the lungs and may cause several immune-related complications such as lymphocytopenia and cytokine storm which are associated with the severity of the disease and predict mortality . The mechanism by which SARS-CoV-2 infection may result in immune system dysfunction is not fully understood. Here we show that SARS-CoV-2 infects human CD4+ T helper cells, but not CD8+ T cells, and is present in blood and bronchoalveolar lavage T helper cells of severe COVID-19 patients. We demonstrated that SARS-CoV-2 spike glycoprotein (S) directly binds to the CD4 molecule, which in turn mediates the entry of SARS- CoV-2 in T helper cells in a mechanism that also requires ACE2 and TMPRSS2. Once inside T helper cells, SARS-CoV-2 assembles viral factories, impairs cell function and may cause cell death. SARS-CoV-2 infected T helper cells express higher amounts of IL-10, which is associated with viral persistence and disease severity. Thus, CD4-mediated SARS-CoV-2 infection of T helper cells may explain the poor adaptive immune response of many COVID- 19 patients.
This study aimed to purify and characterize a novel mannose-binding lectin from the seeds of Centrolobium microchaete. Centrolobium microchaete lectin (CML) was purified by affinity chromatography in mannose-Sepharose-4B column. CML agglutinated rabbit erythrocytes and was inhibited by D-mannose, α-methyl-D-mannoside, D-glucose, N-Acetyl-D-glucosamine and sucrose. The lectin was stable at pH 7.0 and 8.0 and temperatures up to 60°C. The monomeric form of CML showed approximately 28kDa, and its native form is probably a homodimer, as determined by gel filtration chromatography. The primary structure of CML was determined by tandem mass spectrometry that showed CML as a protein with two distinct forms (isolectins CML-1 and CML-2) with 246 and 247 residues, respectively. CML-2 possesses one residue of Asn more than CML-1 in C-terminal. The primary structure of CML agrees with the molecular weights found by electrospray ionization mass spectrometry: 27,224 and 27,338Da for CML-1 and CML-2, respectively. CML is a metal-dependent glycoprotein. Moreover, the glycan composition of CML and its structure were predicted.
Backgroundβ-Xylosidases are glycoside hydrolases (GHs) that cleave xylooligosaccharides and/or xylobiose into shorter oligosaccharides and xylose. Aspergillus nidulans is an established genetic model and good source of carbohydrate-active enzymes (CAZymes). Most fungal enzymes are N-glycosylated, which influences their secretion, stability, activity, signalization, and protease protection. A greater understanding of the N-glycosylation process would contribute to better address the current bottlenecks in obtaining high secretion yields of fungal proteins for industrial applications.ResultsIn this study, BxlB—a highly secreted GH3 β-xylosidase from A. nidulans, presenting high activity and several N-glycosylation sites—was selected for N-glycosylation engineering. Several glycomutants were designed to investigate the influence of N-glycans on BxlB secretion and function. The non-glycosylated mutant (BxlBnon-glyc) showed similar levels of enzyme secretion and activity compared to the wild-type (BxlBwt), while a partially glycosylated mutant (BxlBN1;5;7) exhibited increased activity. Additionally, there was no enzyme secretion in the mutant in which the N-glycosylation context was changed by the introduction of four new N-glycosylation sites (BxlBCC), despite the high transcript levels. BxlBwt, BxlBnon-glyc, and BxlBN1;5;7 formed similar secondary structures, though the mutants had lower melting temperatures compared to the wild type. Six additional glycomutants were designed based on BxlBN1;5;7, to better understand its increased activity. Among them, the two glycomutants which maintained only two N-glycosylation sites each (BxlBN1;5 and BxlBN5;7) showed improved catalytic efficiency, whereas the other four mutants’ catalytic efficiencies were reduced. The N-glycosylation site N5 is important for improved BxlB catalytic efficiency, but needs to be complemented by N1 and/or N7. Molecular dynamics simulations of BxlBnon-glyc and BxlBN1;5 reveals that the mobility pattern of structural elements in the vicinity of the catalytic pocket changes upon N1 and N5 N-glycosylation sites, enhancing substrate binding properties which may underlie the observed differences in catalytic efficiency between BxlBnon-glyc and BxlBN1;5.ConclusionsThis study demonstrates the influence of N-glycosylation on A. nidulans BxlB production and function, reinforcing that protein glycoengineering is a promising tool for enhancing thermal stability, secretion, and enzymatic activity. Our report may also support biotechnological applications for N-glycosylation modification of other CAZymes.
Bisphenol A (BPA, 2,2-bis-(4-hydroxyphenyl)propane) is used as a precursor in the synthesis of polycarbonate and epoxy plastics; however, its availability in the environment is causing toxicity as an endocrine-disrupting chemical. Metabolism of BPA and their analogues (substitutes) is generally performed by liver cytochrome P450 enzymes and often leads to a mixture of products, and some of those are toxic. To understand the product distributions of P450 activation of BPA, we have performed a computational study into the mechanisms and reactivities using large model structures of a human P450 isozyme (P450 2C9) with BPA bound. Density functional theory (DFT) calculations on mechanisms of BPA activation by a P450 compound I model were investigated, leading to a number of possible products. The substrate-binding pocket is tight, and as a consequence, aliphatic hydroxylation is not feasible as the methyl substituents of BPA cannot reach compound I well due to constraints of the substrate-binding pocket. Instead, we find low-energy pathways that are initiated with phenol hydrogen atom abstraction followed by OH rebound to the phenolic ortho-or para-position. The barriers of para-rebound are well lower in energy than those for ortho-rebound, and consequently, our P450 2C9 model predicts dominant hydroxycumyl alcohol products. The reactions proceed through two-state reactivity on competing doublet and quartet spin state surfaces. The calculations show fast and efficient substrate activation on a doublet spin state surface with a rate-determining electrophilic addition step, while the quartet spin state surface has multiple high-energy barriers that can also lead to various side products including C 4 -aromatic hydroxylation. This work shows that product formation is more feasible on the low spin state, while the physicochemical properties of the substrate govern barrier heights of the rate-determining step of the reaction. Finally, the importance of the second-coordination sphere is highlighted that determines the product distributions and guides the bifurcation pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.