Despite the great potential of both π-conjugated organoboron polymers and BN-doped polycyclic aromatic hydrocarbons in organic optoelectronics, our knowledge of conjugated polymers with B-N bonds in their main chain is currently scarce. Herein, the first examples of a new class of organic-inorganic hybrid polymers are presented, which consist of alternating NBN and para-phenylene units. Polycondensation with B-N bond formation provides facile access to soluble materials under mild conditions. The photophysical data for the polymer and molecular model systems of different chain lengths reveal a low extent of π-conjugation across the NBN units, which is supported by DFT calculations. The applicability of the new polymers as macromolecular polyligands is demonstrated by a cross-linking reaction with Zr(IV) .
Conjugated organoboranes have emerged as attractive hybrid materials for optoelectronic applications. Herein, a highly efficient, environmentally benign catalytic B-C bond formation method is presented that uses organosilicon compounds, dibromoboranes, and the metal-free organocatalyst MeSiNTf. This Si/B exchange approach has been successfully applied to the synthesis of arylborane molecules 4a-c, oligomers 8a,b, and polymers 8a',b'. Photophysical investigations, supported by TD-DFT calculations, reveal highly effective π-conjugation in thienyl- and furylborane species; the latter are also highly emissive.
Substitution of selected CC units in π-conjugated organic frameworks by their isoelectronic and isosteric BN units (BN/CC isosterism) has proven to be a successful concept for the development of BN-doped polycyclic aromatic hydrocarbons (PAHs) with intriguing properties and functions. The first examples have just demonstrated the applicability of this approach to polymer chemistry. Herein, we present the synthesis and comprehensive characterization of the first poly(p-phenylene iminoborane). This novel inorganic-organic hybrid polymer can be regarded as a BN analogue of the well-known poly(p-phenylene vinylene) (PPV). Photophysical investigations on the polymer and a series of model oligomers provide clear evidence of some π-conjugation across the B=N bonds and extension of the conjugation path with increasing chain length. TD-DFT calculations provide deeper insight into the electronic structure of the new materials.
The application of our newly developed B-C coupling method by catalytic Si/B exchange is demonstrated for the synthesis of a series of triarylboranes (1), monodisperse thienyl- and furylborane dimers (2) and trimers (9), extended oligomers (3) and polymers (3'), as well as mixed (oligo)thienyl-/furylboranes. The structures of 1 aa , 1 bb , and 2 bbb , determined by X-ray crystallography, reveal largely coplanar hetarene rings and BR environments, which are most pronounced in the furylborane species. Photophysical investigations, supported by TD-DFT calculations, revealed pronounced π-electron delocalization over the hetarene backbones including the boron centers. With an extended series of derivatives of varying chain lengths available, we were able to determine the effective conjugation lengths (ECL) of poly(thienylborane)s and poly(furylborane)s, which have been reached with the highest-molecular-weight derivatives of our study. Through variation of the furan-to-thiophene ratio, the photophysical properties of these materials are effectively modulated. Significantly, higher furan contents lead to considerably increased fluorescence intensities. Compounds 1 aa , 1 bb , and 3 a showed the ability to bind fluoride anions. The binding process is signaled by a distinct change in their optical absorption characteristics, thus rendering these materials attractive targets for sensory applications.
A series of phosphonate ester supported lanthanide complexes bearing functionalities for subsequent immobilisation on semi-conductor surfaces have been prepared. Six phosphonate ester ligands (L1-L6) with varying aromatic residues were synthesised....
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.