In order to determine the influence of halogen substituent on the self-assembly of the 6,9-diamino-2-ethoxyacridinium cations and 3-halobenzoate anions in the crystals formed from ethacridine and halobenzoic acids, the series of ethacridinium meta-halobenzoates dihydrates: ethacridinium 3-chlorobenzoate dihydrate (1), ethacridinium 3-bromobenzoate dihydrate (2), and ethacridinium 3-iodobenzoate dihydrate (3), were synthesized and structurally characterized. Single-crystal X-ray diffraction measurements showed that the title compounds crystallized in the monoclinic P21/c space group and are isostructural. In the crystals of title compounds, the ions and water molecules interact via N–H⋯O, O–H⋯O and C–H⋯O hydrogen bonds and π–π stacking interactions to produce blocks. The relationship between the distance X⋯O between the halogen atom (X=Cl, Br, I) of meta-halobenzoate anion and the O-atom from the ethoxy group of cation from neighbouring blocks and crystal packing is observed in the crystals of the title compounds.
The co-crystallization of active pharmaceutical ingredient naproxen with some acridines (acridine, 9-aminoacridine, 6,9-diamino-2-ethoxyacridine) has been explored, as well as the conditions under which the crystallization can be carried out have...
The synthesis, structural characterization and influence of solvents on the crystal packing of solvated complexes of ethacridine with phthalic acid: 6,9-diamino-2-ethoxyacridinium phthalate methanol solvate (1), 6,9-diamino-2-ethoxyacridinium phthalate ethanol solvate (2), 6,9-diamino-2-ethoxyacridinium phthalate isobutanol solvate (3), and 6,9-diamino-2-ethoxyacridinium phthalate tert-butanol solvate monohydrate (4) are described in this article. Single-crystal XRD measurements revealed that the compounds 1–4 crystallized in the triclinic P-1 space group, and the 6,9-diamino-2-ethoxyacridinium cations, phthalic acid anions and solvent molecules interact via strong N–H···O, O–H···O, C–H···O hydrogen bonds, and C–H···π and π–π interactions to form different types of basic structural motifs, such as: heterotetramer bis[···cation···anion···] in compound 1 and 2, heterohexamer bis[···cation···alcohol···anion···] in compound 3, and heterohexamer bis[···cation···water···anion···] in compound 4. Presence of solvents molecule(s) in the crystals causes different supramolecular synthons to be obtained and thus has an influence on the crystal packing of the compounds analyzed.
Multicomponent crystals containing diclofenac and acridine (1) and diclofenac and 6,9-diamino-2-ethoxyacridine (2) were synthesized and structurally characterized. The single-crystal XRD measurements showed that compound 1 crystallizes in the triclinic P-1 space group as a salt cocrystal with one acridinium cation, one diclofenac anion, and one diclofenac molecule in the asymmetric unit, whereas compound 2 crystallizes in the triclinic P-1 space group as an ethanol solvate monohydrate salt with one 6,9-diamino-2-ethoxyacridinium cation, one diclofenac anion, one ethanol molecule, and one water molecule in the asymmetric unit. In the crystals of the title compounds, diclofenac and acridines ions and solvent molecules interact via N–H···O, O–H···O, and C–H···O hydrogen bonds, as well as C–H···π and π–π interactions, and form heterotetramer bis[···cation···anion···] (1) or heterohexamer bis[⋯cation⋯ethanol⋯anion⋯] (2). Moreover, in the crystal of compound 1, acridine cations and diclofenac anions interact via N–H···O hydrogen bond, C–H···π and π–π interactions to produce blocks, while diclofenac molecules interact via C–Cl···π interactions to form columns. In the crystal of compound 2, the ethacridine cations interact via C–H···π and π–π interactions building blocks, while diclofenac anions interact via π–π interactions to form columns.
The liquid-assisted grinding (LAG) approach was exploited to efficiently produce a new salt cocrystal with a minimum expenditure of reagents and energy, with possible application in the pharmaceutical field. LAG was applied to the acridine/diclofenac couple, and a new cocrystal was obtained with a 1:1 ratio of reagents and its structure resolved by X-ray powder diffraction (XRPD). The XRPD analysis confirmed that the yield is higher than 90% and the limited use of solvents and the absence of waste generally makes the synthesis very efficient and with the minimum possible environmental impact. The crystal structure of the title compound was compared to a previously solved 1:2 cocrystal, also with the aid of Hirshfeld’s surface analysis and calculations of the energy framework. The packing of the 1:1 structure is stabilized by a strong H-bond and partial π⋯π-stacking interactions. It differs considerably from that of the previously identified cocrystal, in which two strong hydrogen bonds and a perfect interlocking of the molecules thanks to the the π⋯π stacking induce a much higher stability, as confirmed by energy framework calculations. DSC analysis confirmed its purity and a melting point at 140 °C, which is different from those of the two reactants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.