Cellulose nitrate and acetate are materials at risk in heritage collections because it is not possible to predict the evolution of their conservation state over time. Knowing that the degree of substitution (DS) of these materials correlates with their state of conservation because the fundamental degradation mechanism is hydrolysis, in this work, DS was measured in historical objects and artworks. Infrared spectra were used to develop and optimize calibration curves for cellulose nitrate and acetate references that were next applied to calculate DS values of heritage objects. The extent of hydrolysis measured, with this tool, correlated well with the physical deterioration assessed through the sample hardness (Shore A) which was measured with a Durometer. Calibration curves were optimized in reference materials by Attenuated Total Reflectance (ATR-FTIR) and Micro Fourier Transform Infrared Spectroscopy (μFTIR). The DS values of the AC reference materials was previously calculated by nuclear magnetic resonance spectroscopy. The calibration curves were obtained plotting DS as a function of the ratio between a reference peak (which does not suffer relevant changes during degradation) and selected peaks that monitor the degradation for cellulose acetate and nitrate polymers (avoiding the interference of plasticizers). The reference peak for both was the COC stretching mode (νCOC). The probe peak was, for cellulose nitrate, the NO 2 asymmetric stretching (ν a NO 2) and, for cellulose acetate, the OH stretching mode (νOH). This ratio was then applied to calculate DS values of historical materials, in good and poor conservation condition; in situ by ATR, and in micro-samples collected from artworks by μFTIR. This selection comprises cinematographic and photographic films dated from the 1890s to the 1960s, and contemporary works of art made with cellulose acetate sheets by Portuguese artist José Escada dated from the 1960s. Finally, by comparison with the original estimated DS values, we show how this tool permits to define the state of degradation of these complex polymer matrixes. Thus, establishing the quantification of the DS as a novel tool to monitor the degradation of cellulose ester plastics, contributing in this way for a sustainable preservation of an irreplaceable heritage.
The degradation of cellulose nitrate cinematographic films stored inside an aluminum can was studied by infrared spectroscopy and Raman microscopy. Cellulose nitrate image heritage is strongly susceptible to degradation, being a major conservation challenge. Infrared spectroscopy has been the traditional technique in the assessment of the polymer degradation, but new in situ diagnostic tools to monitor the initial stages of degradation are needed. In this work, cellulose nitrate films were produced and irradiated as aging references to understand how chemical changes were observed in Raman spectroscopy. In comparison with infrared spectroscopy, this technique confirmed the mechanisms proposed in the literature and, at advanced stages of degradation, provided new relevant information detecting an intense peak at 1046 cm −1 associated to nitric acid. Comparing these results with the cinematographic films, it was observed that the plasticizers, which identification was more straightforward using Raman microscopy, have contributions in the regions were chemical changes occur, making it difficult to draw conclusions. Nevertheless, nitric acid and silver nitrate peaks were found in Raman spectra confirming the unstable and noxious environment inside de aluminum can and proving that Raman microscopy can be a valuable complementary in situ technique for cellulose nitrate degradation studies.
Microspectrofluorimetry offers high sensitivity, selectivity, fast data acquisition, good spatial resolution (down to 2 μm), and the possibility of in-depth profiling. It has proved to be a powerful analytical tool in identifying dyes and lake pigments in works of art. To maximize the extraction of the information present in fluorescence emission and excitation spectra, we propose a chemometric approach to discriminate dark reds to pink colours based on brazilwood, cochineal, kermes and lac dye. These range of hues was obtained using a diverse range of medieval recipes for brazilwood, kermes and lac colourants and Winsor and Newton archive for cochineal lake pigments; the lake pigments were analyzed as colour paints (arabic-gum and glair were the medieval binders selected). Unsupervised (HCA & PCA) and supervised (SIMCA) modelling were tested, allowing to explore similarities between colourants and classify the spectral data into the different lake pigments classes. It was possible to separate the four different chromophores based on their excitation spectra or bringing together the emission and excitation spectra. The first method could also differentiate between the cochineal lake pigments, in particular between crimson lakes with different aluminates and an extender (gypsum) and between carmines with different complexing ions (aluminum and calcium).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.