Information protection is an essential safety issue in many human activity fields. The development of computerisation (informatisation) brings new challenges in the area of non-invasive information processing in information technology (IT) systems. The known fact is that VGA, DVI/HDMI interfaces, for example, or formatter systems of laser printers that process video signals are sources of effective disclosing electromagnetic emission. Emission safety of the more and more common three-dimensional (3D) printers is less known. The selected 3D printer with the ME3DP (Material Extrusion 3D Printing) technology was tested to analyse the existing risk. Simple objects were printed during its operation to identify the stepping motor operation that are emission sources in the secondary channels. The analysis carried out focused on finding the correlation between the registered emissions and the printer head (printhead) movements when printing an object. It was shown that the analysis of the registered sensitive signal runtimes and their spectrograms allows us to recreate the printed object shape. The studies focused on measuring the acoustic signals that came from the stepping motors. The analysis of the possibilities of identifying the shapes of printed objects was based on the visual method. The article presents the study results and their analyses.
The protection of information processed electronically involves a large number of IT devices from computer sets or laptops to monitors, printers, servers, etc. In many cases, classified information processing might be associated with the use of projectors, which are an indispensable element of meetings for a limited group of people. Such devices are connected to computers through interfaces of various analogue and digital standards and can become an additional source of unwanted emissions, and the distinctive features of these emissions allow the information displayed to be unwantedly reproduced. This paper offers evidence of the existing threat related to electromagnetic infiltration of several projectors, by showing images reconstructed from registered revealing emissions. The paper presents an analysis of several solutions that can be used to reduce the level of infiltration susceptibility of projectors or to highlight this property in the device assessment process. The possibilities of using special computer fonts and the so-called method of colors—background color and text color—is analyzed. The tests were carried out on randomly selected projectors in two independent laboratories, and, based on these results, a number of interesting conclusions have been highlighted at the end.
Devices powered by electricity become sources of electromagnetic emissions in the course of their operation. In the case of devices oriented to process information, these emissions can have a character of revealing emissions, i.e., those whose reception and analysis allow for remote reconstruction of related data. The best known example of this phenomenon is the formation of revealing emissions during the operation of imaging devices: monitors, projectors or printers. Increasingly more often, these components are used for communication in the form of videoconferences with other network users. The article presents the result of tests and analyses of threats related to the use of such solutions (monitors, personal computers, VoIP terminals) for the confidentiality of conversations and the data presented during them. The focus is on video signals; however, the potential possibilities of revealing speech signals were also indicated. Such phenomenon causes a huge threat to data confidentiality because the combination of graphics and sound can undoubtedly contain much more information about the protected data than just graphics or sound separately. The presented results of analyses apply to graphic data, possibilities of non-invasive acquisition of such data, similarity of images and of patterns and reconstructed image and image recognition. The results indicate that there is still a risk of loss of data confidentiality due to a phenomenon of an electromagnetic leakage, and specialized instrumentation is not required for its interception under favorable circumstances. This may particularly apply to audio data that may be accidentally received by home radio receivers. In particular, the presented results of analyses apply to a Special Issue of Symmetry which is characterized by security and privacy in communication systems and networks, signal processing, video and image processing, multimedia communications and electromagnetic compatibility. All these scientific and technical areas have either symmetrical or asymmetrical approaches, and they have to be taken into consideration as a whole in order to choose the best combinations to protect processed information.
A protection of information against electromagnetic penetration is very often considered in the aspect of the possibility of obtaining data contained in printed documents or displayed on screen monitors. However, many printing devices are equipped with screens based on LED technology or liquid crystal displays. Options enabling the selection of parameters of the printed document, technical settings of the device (e.g., screen activity time) are the most frequently displayed information. For more extensive displays, more detailed information appears, which may contain data that are not always irrelevant to third parties. Such data can be: names of printed documents (or documents registered and available on the internal media), service password access, user names or regular printer user activity. The printer display can be treated as a source of revealing emissions, like a typical screen monitor. The emissions correlated with the displayed data may allow us to obtain the abovementioned information. The article includes analyses of various types of computer printer displays. The tests results of the existing threat are presented in the form of reconstructed images that show the possibility of reading the text data contained in them.
The protection of information against electromagnetic penetration is one of the most important aspects related to the protection of information against its non-invasive acquisition. Compared to the activities of cybercriminals, the use of electromagnetic emissions in the electromagnetic infiltration process does not leave any traces of activity, and the owner of the information is not aware of its loss. The most common activities of electromagnetic eavesdropping are related to the infiltration of emission sources, graphically revealing the processing of information using both analog and digital methods. This allows for the presentation of reconstructed data in the form of images. Correct display of the acquired information requires knowledge of raster parameters such as line length and the number of lines building the reconstructed image. Due to the lack of direct access to the intercepted device, knowledge in this field does not allow for the correct determination of the aforementioned parameters, and thus, for recreating an image that would contain legible and understandable data. Additionally, incorrect values of the parameters result in failure of further processing of the obtained image, e.g., by using a coherent summation of images. Therefore, it is necessary to propose a solution that will allow not so much to roughly define the raster parameters but to estimate them precisely. Moreover, it should enable the automation of the process after the implementation of an appropriate algorithm. The article proposes an algorithm for estimating the line length of the reconstructed image. The raster parameter estimated with the use of the algorithm allows for summarizing images several dozen times with a significant improvement in the image quality and readability of the data contained in it. The image summation algorithm is very often used as one of the main image processing methods in the electromagnetic infiltration process. Incorrect raster parameters often make coherent summation useless. The proposed algorithm for estimating the line length of the reconstructed image uses three methods of determining the line length of the image for a given accuracy. At the same time, criteria were indicated that must be met to determine the correct length of the image line for the assumed accuracy of estimation. Obtained results confirmed that the proposed methods and criteria are effective in the process of electromagnetic infiltration. These methods allow us to determine the line length of reconstructed images with accuracy up to .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.