Semantic Image Interpretation (SII) is the task of extracting structured semantic descriptions from images. It is widely agreed that the combined use of visual data and background knowledge is of great importance for SII. Recently, Statistical Relational Learning (SRL) approaches have been developed for reasoning under uncertainty and learning in the presence of data and rich knowledge. Logic Tensor Networks (LTNs) are a SRL framework which integrates neural networks with first-order fuzzy logic to allow (i) efficient learning from noisy data in the presence of logical constraints, and (ii) reasoning with logical formulas describing general properties of the data. In this paper, we develop and apply LTNs to two of the main tasks of SII, namely, the classification of an image's bounding boxes and the detection of the relevant part-of relations between objects. To the best of our knowledge, this is the first successful application of SRL to such SII tasks. The proposed approach is evaluated on a standard image processing benchmark. Experiments show that background knowledge in the form of logical constraints can improve the performance of purely data-driven approaches, including the state-of-theart Fast Region-based Convolutional Neural Networks (Fast R-CNN). Moreover, we show that the use of logical background knowledge adds robustness to the learning system when errors are present in the labels of the training data.
Relational learning can be described as the task of learning first-order logic rules from examples. It has enabled a number of new machine learning applications, e.g. graph mining and link analysis. Inductive Logic Programming (ILP) performs relational learning either directly by manipulating first-order rules or through propositionalization, which translates the relational task into an attribute-value learning task by representing subsets of relations as features. In this paper, we introduce a fast method and system for relational learning based on a novel propositionalization called Bottom Clause Propositionalization (BCP). Bottom clauses are boundaries in the hypothesis search space used by ILP systems Progol and Aleph. Bottom clauses carry semantic meaning and can be mapped directly onto numerical vectors, simplifying the feature extraction process. We have integrated BCP with a well-known neural-symbolic system, C-IL 2 P, to perform learning from numerical vectors. C-IL 2 P uses background knowledge in the form of propositional logic programs to build a neural network. The integrated system, which we call CILP++, handles first-order logic knowledge and is available for download from Sourceforge. We have evaluated CILP++ on seven ILP datasets, comparing results with Aleph and a well-known propositionalization method, RSD. The results show that CILP++ can achieve accuracy comparable to Aleph, while being generally faster, BCP achieved statistically significant improvement in accuracy in comparison with RSD when running with a neural network, but BCP and RSD perform similarly when running with C4.5. We have also extended CILP++ to include a statistical feature selection method, mRMR, with preliminary results indicating that a reduction of more than 90% of features can be achieved with a small loss of accuracy.
This is the accepted version of the paper.This version of the publication may differ from the final published version. Abstract Learning representation from audio data has shown advantages over the hand-crafted features such as Mel Frequency Cepstral Coefficients (MFCC) in many audio applications. In most of the representation learning approaches, the connectionist systems have been used to learn and extract latent features from the fixed length data. In this paper, we propose an approach to combine the learned features and the MFCC features for speaker recognition task, which can be applied to audio scripts of different length. In particular, we study the use of features from different levels of Deep Belief Network for quantizing the audio data into vectors of audio-word counts. These vectors represent the audio scripts of different length that make them easier to train a classifier. We show in the experiment that the audio-word count vectors generated from mixture of DBN features at different layers give better performance than the MFCC features. We also can achieve further improvement by combining the audio-word count vector and the MFCC features. Permanent repository link
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.