We derive exact analytic expressions for the distributions of eigenvalues and singular values for the product of an arbitrary number of independent rectangular gaussian random matrices in the limit of large matrix dimensions. We show that they both have power-law behavior at zero and determine the corresponding powers. We also propose a heuristic form of finite size corrections to these expressions which very well approximates the distributions for matrices of finite dimensions.
We show that the limiting eigenvalue density of the product of n identically distributed random matrices from an isotropic unitary ensemble is equal to the eigenvalue density of nth power of a single matrix from this ensemble, in the limit when the size of the matrix tends to infinity. Using this observation, one can derive the limiting density of the product of n independent identically distributed non-Hermitian matrices with unitary invariant measures. In this paper we discuss two examples: the product of n Girko-Ginibre matrices and the product of n truncated unitary matrices. We also provide evidence that the result holds also for isotropic orthogonal ensembles.
This is a longer version of our article Burda et al., Phys. Rev. E82, 061114 (2010), containing more detailed explanations and providing pedagogical introductions to the methods we use. We consider a product of an arbitrary number of independent rectangular Gaussian random matrices. We derive the mean densities of its eigenvalues and singular values in the thermodynamic limit, eventually verified numerically. These densities are encoded in the form of the so-called M -transforms, for which polynomial equations are found. We exploit the methods of planar diagrammatics, enhanced to the non-Hermitian case, and free random variables, respectively; both are described in the appendices. As particular results of these two main equations, we find the singular behavior of the spectral densities near zero. Moreover, we propose a finite-size form of the spectral density of the product close to the border of its eigenvalues' domain. Also, led by the striking similarity between the two main equations, we put forward a conjecture about a simple relationship between the eigenvalues and singular values of any non-Hermitian random matrix whose spectrum exhibits rotational symmetry around zero.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.