A B S T R A C TActinomycin D and nutlin-3a (A + N) activate p53, partly through induction of phosphorylation on Ser392. The death of A549 cells induced by A + N morphologically resembles inflammation-inducing pyroptosis -cell destruction triggered by activated caspase-1. The treatment with A + N (or camptothecin) strongly upregulated caspase-1 and its two activators: IFI16 and NLRP1, however, caspase-1 activation was not detected. A549 cells may have been primed for pyroptosis, with the absence of a crucial trigger. The investigation of additional innate immunity elements revealed that A + N (or camptothecin) stimulated the expression of NLRX1, STING (stimulator of interferon genes) and two antiviral proteins, IFIT1 and IFIT3. IFI16 and caspase-1 are coded by p53regulated genes which led us to investigate regulation of NLRP1, NLRX1, STING, IFIT1 and IFIT3 in p53-dependent mode. The upregulation of NLRP1, NLRX1 and STING was attenuated in p53 knockdown cells. The upsurge of the examined genes, and activation of p53, was inhibited by C16, an inhibitor of PKR kinase. PKR was tested due to its ability to phosphorylate p53 on Ser392. Surprisingly, C16 was active even in PKR knockdown cells. The ability of C16 to prevent activation of p53 and expression of innate immunity genes may be the source of its strong anti-inflammatory action. Moreover, cells exposed to A + N can influence neighboring cells in paracrine fashion, for instance, they shed ectodomain of COL17A1 protein and induce, in p53-dependent mode, the expression of gene for interleukin-7. Further, the activation of p53 also spurred the expression of SOCS1, an inhibitor of interferon triggered STAT1-dependent signaling. We conclude that, stimulation of p53 primes cells for the production of interferons (through upregulation of STING), and may activate negative-feedback within this signaling system by enhancing the production of SOCS1.
Background:PPM1D (WIP1) negatively regulates by dephosphorylation many proteins including p53 tumour suppressor. The truncating mutations (nonsense and frameshift) in exon 6 of PPM1D were found recently in blood cells of patients with breast, ovarian or colorectal cancer. These mutants code for gain-of-function PPM1D with retained phosphatase activity. Their significance in carcinogenesis is unknown.Methods:The exon 6 of PPM1D was sequenced in blood DNA of 543 non-small-cell lung cancer patients (NSCLC). The functional significance of selected PPM1D alterations (Arg458X, Lys469Glu) was compared with the wild-type gene and examined by recombinant DNA techniques, immunoblotting and luciferase reporter assays.Results:The frameshift mutations were found in five NSCLC patients (5/543; 0.92%), all of them had squamous cell carcinomas (5/328; 1.5%). All patients with the mutations were exposed, before the blood collection, to the DNA damaging agents as a part of chemotherapeutic regimen. Functional tests demonstrated that truncating mutation Arg458X causes enhancement of dephosphorylation activity of PPM1D toward serine 15 of p53, whereas Lys469Glu version is equivalent to the wild-type. Neither version of PPM1D (wild-type, Arg458X, Lys469Glu) significantly modulated the ability of p53 to transactivate promoters of the examined p53-target genes (BAX and MDM2).Conclusions:The truncating mutations of PPM1D are present in blood DNA of NSCLC patients at frequency similar to percentage determined for ovarian cancer patients. Our findings raise a question if the detected lesions are a result of chemotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.