SummaryBackground:MELAS syndrome (mitochondrial myopathy, encephalopathy, lactic acidosis, stroke-like episodes) is a rare, multisystem disorder which belongs to a group of mitochondrial metabolic diseases. As other diseases in this group, it is inherited in the maternal line.Case Report:In this report, we discussed a case of a 10-year-old girl with clinical and radiological picture of MELAS syndrome. We would like to describe characteristic radiological features of MELAS syndrome in CT, MRI and MR spectroscopy of the brain and differential diagnosis.Conclusions:The rarity of this disorder and the complexity of its clinical presentation make MELAS patients among the most difficult to diagnose. Brain imaging studies require a wide differential diagnosis, primarily to distinguish between MELAS and ischemic stroke. Particularly helpful are the MRI and MR spectroscopy techniques.
Cutaneous leishmaniasis (CL) is a neglected tropical disease that requires novel tools for its understanding, diagnosis, and treatment follow-up. In the cases of other cutaneous pathologies, such as cancer or cutaneous ulcers due to diabetes, optical diffuse reflectance-based tools and methods are widely used for the investigation of those illnesses. These types of tools and methods offer the possibility to develop portable diagnosis and treatment follow-up systems. In this article, we propose the use of a three-layer diffuse reflectance model for the study of the formation of cutaneous ulcers caused by CL. The proposed model together with an inverse-modeling procedure were used in the evaluation of diffuse-reflectance spectral signatures acquired from cutaneous ulcers formed in the dorsal area of 21 golden hamsters inoculated with Leishmanisis braziliensis. As result, the quantification of the model’s variables related to the main biological parameters of skin were obtained, such as: diameter and volumetric fraction of keratinocytes, collagen; volumetric fraction of hemoglobin, and oxygen saturation. Those parameters show statistically significant differences among the different stages of the CL ulcer formation. We found that these differences are coherent with histopathological manifestations reported in the literature for the main phases of CL formation.
Skin ulcers (SU) are ones of the most frequent causes of consultation in primary health-care units (PHU) in tropical areas. However, the lack of specialized physicians in those areas, leads to improper diagnosis and management of the patients. There is then a need to develop tools that allow guiding the physicians toward a more accurate diagnosis. Multi-spectral imaging systems are a potential non-invasive tool that could be used in the analysis of skin ulcers. With these systems it is possible to acquire optical images at different wavelengths which can then be processed by means of mathematical models based on optimization 1 approaches. The processing of those kind of images leads to the quantification of the main components of the skin. In the case of skin ulcers, these components could be correlated to the different stages of wound healing during the follow-up of a skin ulcer. This article presents the processing of a skin ulcer multi-spectral image. The ulcer corresponds to Leishmaniasis which is one of the diseases the most prominent in tropical areas. The image processing is performed by means of a light-tissue interaction model based on the distribution of the skin as a semi-infinite layer. The model, together with an optimization approach allows quantifying the main light-absorbing and scattering skin-parameters in the visible and near-infrared range. The results show significant differences between healthy and unhealthy area of the image.
High precision manipulation becomes a recurrent need in micro or nanoscale. Microrobots based on active material were designed to perform micromanipulation tasks in various environments such as microrobotic stations or electronic microscopes (SEM, TEM). These active materials are used to generate proportional actuation, but show some drawbacks we want to avoid (non linearity, integration of sensors,. . .). In this paper we propose a new type of microrobot, called digital microrobot. It is based on the use of bistable modules (Fig. 1), and generates a discrete workspace. This microrobot can be used in open-loop mode and gets rid of bulky and expensive instruments and sensor integration. Moreover, no external energy is required to maintain the microrobot in a given position. The study presented in this paper is dedicated to the design of the robotic structure in order to generate a desired workspace.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.