BACKGROUND:Microsatellite instability (MSI) is an important marker for screening for hereditary nonpolyposis colorectal cancer (Lynch syndrome) as well as a prognostic and predictive marker for sporadic colorectal cancer (CRC). The mononucleotide microsatellite marker panel is a well-established and superior alternative to the traditional Bethesda MSI analysis panel, and does not require testing for corresponding normal DNA. The most common MSI detection techniques-fluorescent capillary electrophoresis and denaturing HPLC (DHPLC)-both have advantages and drawbacks. A new high-resolution melting (HRM) analysis method enables rapid identification of heteroduplexes in amplicons by their lower thermal stability, a technique that overcomes the main shortcomings of capillary electrophoresis and DHPLC.
SUMMARYType IIS restriction endonuclease Eco31I is a 'short-distance cutter', which cleaves DNA strands close to its recognition sequence, 5′-GGTCTC(1/5). Previously, it has been proposed that related endonucleases recognizing a common sequence core GTCTC possess two active sites for cleavage of both strands in the DNA substrate. Here, we present bioinformatic identification and experimental evidence for a single nuclease active site. We identified a short region of homology between Eco31I and HNH nucleases, constructed a three-dimensional model of the putative catalytic domain and validated our predictions by random and site-specific mutagenesis. The restriction mechanism of Eco31I is suggested by analogy to the mechanisms of phage T4 endonuclease VII and homing endonuclease I-PpoI. We propose that residues D311 and N334 coordinate the cofactor. H312 acts as a general base activating water molecule for the nucleophilic attack. K337 together with R340 and D345 are located in close proximity to the active center and are essential for correct folding of catalytic motif, while D345 together with R264 and D273 could be directly involved in DNA binding. We also predict that the Eco31I catalytic domain contains a putative Zn-binding site, which is essential for its structural integrity. Our results suggest that the HNH-like active site is involved in the cleavage of both strands in the DNA substrate. On the other hand, analysis of site-specific mutants in the region, previously suggested to harbor the second active site, revealed its irrelevance to the nuclease activity. Thus, our data argue against the earlier prediction and indicate the presence of a single conserved active site in Type IIS restriction endonucleases that recognize common sequence core GTCTC.
Rare-cutting restriction enzymes are important tools in genome analysis. We report here the crystal structure of SdaI restriction endonuclease, which is specific for the 8 bp sequence CCTGCA/GG ("/" designates the cleavage site). Unlike orthodox Type IIP enzymes, which are single domain proteins, the SdaI monomer is composed of two structural domains. The N domain contains a classical winged helix-turn-helix (wHTH) DNA binding motif, while the C domain shows a typical restriction endonuclease fold. The active site of SdaI is located within the C domain and represents a variant of the canonical PD-(D/E)XK motif. SdaI determinants of sequence specificity are clustered on the recognition helix of the wHTH motif at the N domain. The modular architecture of SdaI, wherein one domain mediates DNA binding while the other domain is predicted to catalyze hydrolysis, distinguishes SdaI from previously characterized restriction enzymes interacting with symmetric recognition sequences.
Background Non-ischemic dilated cardiomyopathy (DCM) is a heterogeneous disease with a spectrum of etiological factors. However, subsets of the disease are not well-characterized with respect to these factors. The aim of this study was to evaluate the prevalence of myocardial inflammation and cardiotropic viruses in DCM patients and their impact on clinical outcome. Methods Fifty-seven patients with DCM underwent endomyocardial biopsy between 2010 and 2013. Biopsies were analyzed by polymerase chain reaction (PCR) for the presence of cardiotropic viruses, and inflammatory cell infiltration was assessed by immunohistochemistry. During a 5-year follow-up, 27 (47%) patients reached the composite outcome measure: heart transplantation, left ventricle assist device implantation or cardiovascular-related death. Results Thirty-one (54%) patients had myocardial inflammation and cardiotropic viruses were detected in 29 (52%). The most frequent viruses were parvovirus B19 and human herpesvirus type-6. Four specific sub-groups were distinguished by PCR and immunohistochemistry: virus-positive (chronic) myocarditis, autoreactive inflammatory DCM, viral DCM, non-inflammatory DCM. The presence of a viral genome in myocardium or diagnosis of inflammatory DCM did not predict the outcome of composite outcome measures (p > 0.05). However, univariate Cox regression and survival function estimation revealed an association between inflammation by a high number of T-cells and poor prognosis. Conclusions This study has shown that two markers — cardiotropic viruses and myocardial inflammation — are prevalent among DCM patients. They are also helpful in identifying sub-groups of DCM. An increased number of T-lymphocytes in the myocardium is a predictor of poor mid-term and long-term prognosis.
Type II restriction endonucleases (ENases) have served as models for understanding the enzyme-based site-specific cleavage of DNA. Using the knowledge gained from the available crystal structures, a number of attempts have been made to alter the specificity of ENases by mutagenesis. The negative results of these experiments argue that the three-dimensional structure of DNA-ENase complexes does not provide enough information to enable us to understand the interactions between DNA and ENases in detail. This conclusion calls for alternative approaches to the study of structure-function relationships related to the specificity of ENases. Comparative analysis of ENases that manifest divergent substrate specificities, but at the same time are evolutionarily related to each other, may be helpful in this respect. The success of such studies depends to a great extent on the availability of related ENases that recognise partially overlapping nucleotide sequences (e.g. sets of enzymes that bind to recognition sites of increasing length). In this study we report the cloning and sequence analysis of genes for three Type IIS restriction-modification (RM) systems. The genes encoding the ENases Alw26I, Eco31I and Esp3I (whose recognition sequences are 5'-GTCTC-3', 5'-GGTCTC-3' and 5'-CGTCTC-3', respectively) and their accompanying methyltransferases (MTases) have been cloned and the deduced amino acid sequences of their products have been compared. In pairwise comparisons, the degree of sequence identity between Alw26I, Eco31I and Esp3I ENases is higher than that observed hitherto among ENases that recognise partially overlapping nucleotide sequences. The sequences of Alw26I, Eco31I and Esp3I also reveal identical mosaic patterns of sequence conservation, which supports the idea that they are evolutionarily related and suggests that they should show a high level of structural similarity. Thus these ENases represent very attractive models for the study of the molecular basis of variation in the specific recognition of DNA targets. The corresponding MTases are represented by proteins of unusual structural and functional organisation. Both M. Alw26I and M. Esp3I are represented by a single bifunctional protein, which is composed of an m(6)A-MTase domain fused to a m(5)C-MTase domain. In contrast, two separate genes encode the m(6)A-MTase and m(5)C-MTase in the Eco31I RM system. Among the known bacterial m(5)C-MTases, the m(5)C-MTases of M. Alw26I, M. Eco31I and M. Esp3I represent unique examples of the circular permutation of their putative target recognition domains together with the conserved motifs IX and X.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.