Abstract. In this paper, we present a survey of recent results on the Green's functions and on spectrum for stationary problems with nonlocal boundary conditions. Results of Lithuanian mathematicians in the field of differential and numerical problems with nonlocal boundary conditions are described.
Abstract. This paper presents some new results on a spectrum in a complex plane for the second order stationary differential equation with one Bitsadze-Samarskii type nonlocal boundary condition. In this paper, we survey the characteristic function method for investigation of the spectrum of this problem. Some new results on characteristic functions are proved. Many results of this investigation are presented as graphs of characteristic functions. A definition of constant eigenvalues and the characteristic function is introduced for the Sturm-Liouville problem with general nonlocal boundary conditions.
The Sturm‐Liouville problem with various types of nonlocal integral boundary conditions is considered in this paper. In the first part of paper we investigate Sturm‐Liouville problem with two cases of nonlocal integral boundary conditions. We prove general properties of the eigenfunctions and eigenvalues for such problem in the complex case. In the second part we investigate real eigenvalues case. The spectrum depends of these problems on boundary condition parameters is analyzed. Qualitative behaviour of all eigenvalues subject to nonlocal boundary condition parameters is described.
Šiame straipsnyje nagrinejamas Šturmo‐Liuvilio uždavinys su viena nelokaliaja integralinio tipo kraštine salyga. Pirmoje straipsnio dalyje tiriamas Šturmo‐Liuvilio uždavinys su dvieju tipu integraline nelokaliaja salyga. Irodytos tikriniu funkciju ir tikriniu reikšmiu bendrosios savybes komplesineje plokštumoje. Antroje dalyje plačiau ištirtas realiuju tikriniu reikšmiu atvejis. Straipsnyje nagrinejama kaip Šturmo‐Liuvilio uždavinio spektras priklauso nuo kraštiniu salygu parametru. Priklausomai nuo nelokaliuju kraštiniu salygu parametru, aprašytas kokybinis tikriniu reikšmiu pasiskirstymas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.